
 Advanced search

Linux Journal Issue #127/November 2004

Features

OSCAR and Bioinformatics by Bernard Li
Use the software that the big labs use, and put a decade of
Linux cluster management experience to work for you.

Scientific Visualizations with Pov-Ray by Leigh Orf
Here's how a much-needed patch turned the popular rendering
package into a scientific power tool.

Improving Application Performance on HPC Systems with Process
Synchronization by Paul Terry, Amar Shan and Pentti Huttunen

It's a simple concept that gives big results. A team from Cray
takes a leap forward in the struggle to keep all processors in the
cluster occupied efficiently.

Indepth

Readers' Choice 2004 by Heather Mead
Evolution or mutt? Vim or Kate? Old school or eye candy? And
what's your favorite beverage for coding sessions? Heather has
the answers.

MyHDL: a Python-Based Hardware Description Language by Jan
Decaluwe

Design hardware in Python? Why not? New features of the
language are making it a simple, readable choice for new
hardware ideas.

Revision Control with Arch: Introduction to Arch by Nick Moffitt

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/127/7462.html
https://secure2.linuxjournal.com/ljarchive/LJ/127/7486.html
https://secure2.linuxjournal.com/ljarchive/LJ/127/7690.html
https://secure2.linuxjournal.com/ljarchive/LJ/127/7690.html
https://secure2.linuxjournal.com/ljarchive/LJ/127/7724.html
https://secure2.linuxjournal.com/ljarchive/LJ/127/7542.html
https://secure2.linuxjournal.com/ljarchive/LJ/127/7671.html

Get started with a new, flexible working style that's convenient
for far-flung projects and hacking on your laptop.

Embedded

Linux and RTAI for Building Automation by Andres Benitez and
Vicente Gonzales

Simple commodity units and Linux do the work of a big
expensive system. Sounds familiar, but we're talking about air
conditioning.

Toolbox

At the Forge Aggregating with Atom by Reuven M. Lerner
Kernel Korner AEM: a Scalable and Native Event Mechanism for
Linux by Frédéric Rossi
Cooking with Linux Performing at the Speed of Light by Marcel
Gagné
Paranoid Penguin Linux Filesystem Security, Part II by Mick Bauer

Columns

Linux for Suits We're Going to Be a 90% Linux Shop by Doc Searls
EOF No 2.7 Kernel? by Greg Kroah-Hartman

Reviews

GumStix WS200X by Michael Boerner
Mastering UNIX Shell Scripting by Marco Fioretti

Departments

From the Editor
Letters
upFRONT
New Products

Archive Index

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/127/7258.html
https://secure2.linuxjournal.com/ljarchive/LJ/127/7729.html
https://secure2.linuxjournal.com/ljarchive/LJ/127/6980.html
https://secure2.linuxjournal.com/ljarchive/LJ/127/6980.html
https://secure2.linuxjournal.com/ljarchive/LJ/127/7728.html
https://secure2.linuxjournal.com/ljarchive/LJ/127/7727.html
https://secure2.linuxjournal.com/ljarchive/LJ/127/7730.html
https://secure2.linuxjournal.com/ljarchive/LJ/127/7732.html
https://secure2.linuxjournal.com/ljarchive/LJ/127/7652.html
https://secure2.linuxjournal.com/ljarchive/LJ/127/7292.html
https://secure2.linuxjournal.com/ljarchive/LJ/127/7772.html
https://secure2.linuxjournal.com/ljarchive/LJ/127/7700.html
https://secure2.linuxjournal.com/ljarchive/LJ/127/7725.html
https://secure2.linuxjournal.com/ljarchive/LJ/127/7722.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 OSCAR and Bioinformatics

Bernard Li

Issue #127, November 2004

With new cluster deployment and management tools, you can set up a 64-node
cluster in an hour, then put it to work on your research.

The OSCAR (Open Source Cluster Application Resources) Project has been
around for about four years. The concept initially was proposed in January
2000, and the first organizational meeting was held in April of the same year.
The group acknowledged that cluster assembly is time consuming and
repetitive. Thus, the project's goal was to create a toolkit to automate this
process. In doing so, the group hoped to broaden the usage of clusters and
adapt them for the academic and private sector.

The OSCAR Project is overseen by the advisory group OCG (Open Cluster
Group), an informal group with open membership. The OCG strives to make
cluster computing more practical for high-performance computing (HPC)
research and development. The group, like the OSCAR Project, is directed by
representatives from research/academia as well as industry. Key players of the
group include Bald Guy Software, BC Genome Sciences Centre, Dell, Indiana
University, Intel, Louisiana Tech University, Oak Ridge National Laboratory,
Revolution Linux and Sherbrooke University.

OSCAR is one of the OCG working groups. Other projects include HA-OSCAR
(high-availability), Thin-OSCAR (diskless) and SSS-OSCAR (Scalable Systems
Software). To learn more about OCG and its projects, see the on-line Resources
for this article.

The first release of OSCAR was in April 2001, and since then we have released
two major versions. Our release cycle usually coincides with the
SuperComputing Conference, which is held annually in November. The current
version as of writing is 3.0, and we are aiming at releasing 4.0 by
SuperComputing04.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The goal of OSCAR is to provide users with the best practices for installing,
programming and maintaining HPC clusters. Many open-source components
individually work well in an HPC environment but require specific setup
routines. OSCAR acts as the glue to integrate all these components together to
provide a working toolkit. The project targets mid-size clusters (50+ node
clusters). Community feedback suggests this size represents the majority of
clusters assembled today.

OSCAR has the following components:

• Administration: System Installation Suite (SIS), Cluster Command and
Control (C3) and OPIUM (user management).

• HPC tools: the parallel programming libraries: MPICH, LAM/MPI and PVM;
batch systems: OpenPBS/MAUI, Torque and SGE; monitoring tools:
Ganglia and Clumon; and other third-party OSCAR packages.

• Core infrastructure/management: OSCAR Database (ODA) and OSCAR
Package Downloader (OPD).

OSCAR developers are spread out over various geographical locations and
weekly teleconferences are set up to discuss ongoing development issues. The
group also holds annual general meetings to brainstorm new features to be
included in future releases. An annual symposium also is held, usually in
conjunction with HPCS (International Symposium on High Performance
Computing Systems and Applications) where users are encouraged to present
papers on their experiences with OSCAR as well as other development work
relating to HPC. The 2nd annual OSCAR Symposium commenced in May 2004 in
Winnipeg, Canada, and the proceedings are now available.

 Introduction to Bioinformatics

Bioinformatics is the marriage between biology and computer science/IT and is
a rapidly growing field with high stakes in the HPC world. In simple terms,
bioinformatics is concerned with the use of computer algorithms and systems
to analyze biological data such as DNA, RNA, protein and regulatory elements.

Biological data are mainly string sequences. The analyses are usually string
manipulations making Perl the programming language of choice for most
bioinformaticians. Many open-source Perl programmers contribute to the
Bioperl effort, which is a deposit of Perl modules specifically for performing
bioinformatics analyses. Java is employed for larger projects and often for
projects that involve graphical interfaces. Python is gaining a strong foothold in
the field as more programmers learn about the ease of use and high readability
of this relatively new but powerful programming language.

Linux clusters are very popular within the bioinformatics community, because a
lot of the analyses tend to be long-running and repetitive. Linux clusters are
ideal for running such embarrassingly parallel jobs that can be executed
independently of one another. These are not considered true parallel programs
because they do not need parallel programming libraries such as MPI.
Bioinformatics routinely performed on clusters encompass running multiple
scripts and algorithms on different inputs and can be executed on different
CPUs, each with its own address space.

 Walk-Through of a Typical OSCAR Installation

Installing a cluster with the OSCAR Toolkit is a straightforward process. If you
have installed Linux before, you should have little trouble.

Currently, the OSCAR Project supports three Linux distributions: Red Hat 8.0,
Red Hat 9.0 and Mandrake 9.0. The main Linux installation requirement is that
an X windowing environment such as KDE or GNOME is installed; otherwise, a
typical workstation install with software development tools should be sufficient.

After Linux is installed and configured on the head node, you can download the
OSCAR tarball from the projects page, untar it and do the configure, make,
make install routine.

OSCAR, by default, is installed to /opt/oscar. You can change this using the --
prefix flag with configure. After OSCAR has been installed, you can start the
OSCAR Wizard, which provides step-by-step installation menus for setting up
your cluster.

To invoke the wizard, go to /opt/oscar and type ./install_cluster ethX.
Here, ethX refers to the interface that is on the cluster network.

Figure 1. The OSCAR installation main menu. In less than ten steps the cluster is ready to
compute!

OSCAR comes with many prebundled packages. Other packages available from
the various repositories also may be of interest. To download those, simply
click on Download Additional OSCAR Packages in the OSCAR Wizard and choose
the package(s).

Next, you can select the packages you want to install. Packages have three main
categories: core, provided and third party. Core packages must be installed and
cannot be deselected. Provided packages are the ones the OSCAR team
recommends you install, and third-party packages are all the remaining
packages available from the repositories.

https://secure2.linuxjournal.com/ljarchive/LJ/127/7462f2.large.jpg

Figure 2. OSCAR Package Downloader—additional packages can be downloaded in this menu.

Configuration changes can be made to packages using the Configure Selected
OSCAR Packages menu.

The next stage is to Install OSCAR Server Packages. This is non-interactive and
basically sets up packages for use on the server. When it is done, you are
alerted by a pop-up window.

https://secure2.linuxjournal.com/ljarchive/LJ/127/7462f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7462f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7462f3.large.jpg

Figure 3. Non-interactive step where server packages are installed.

Now the fun part begins. You can build a client image with the Build OSCAR
Client Image step. In this step, you select a few options for the client image you
want to build. This image then is pushed to your client nodes. You can provide
a list of RPM packages to be installed on the base image, and you also can
decide how to partition the hard drive and assign IP addresses. Lastly, you can
choose the post-image action, such as rebooting the machine when imaging is
done.

https://secure2.linuxjournal.com/ljarchive/LJ/127/7462f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7462f3.large.jpg

Figure 4. Create a client image based on a user-provided package list and partition table.

In the Define OSCAR Clients step, you can specify the domain name, base name
of your clients, the number of nodes you want to bring up for this session and
other network settings. After you click the Add clients button, these definitions
are configured and the cluster is almost ready to be rolled out.

Figure 5. Cluster nodes and network settings are defined here.

Next, you will want to set up networking for your cluster. Here, you can boot up
your client nodes with PXE or floppy disk, and the OSCAR head node then
collects the MAC addresses and you can assign them to particular hosts. Once
this is done, the client nodes are imaged immediately. Typically, it takes
anywhere from 10–30 minutes to image each node, depending on the speed of
your hard drive. When deploying a cluster, multiple nodes can be imaged at the
same time. We usually start up ten nodes to be imaged at a time so the head
node does not get heavily loaded. With this staggered approach, you should be
able to deploy a 64-node cluster within an hour.

https://secure2.linuxjournal.com/ljarchive/LJ/127/7462f6.large.jpg

Figure 6. Cluster nodes are network-booted, and their MAC addresses assigned to host
entries.

After the nodes are imaged and rebooted, you can continue with the next step,
which is to Complete the Cluster Setup. This again is a non-interactive step in
which final installation configurations and other clean-up functions are
performed.

https://secure2.linuxjournal.com/ljarchive/LJ/127/7462f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7462f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7462f7.large.jpg

Figure 7. Non-interactive step where final installation configurations and clean-up functions
are performed.

Lastly, you may want to Test Cluster Setup. This runs a series of tests for the
cluster install as well as for individual packages. If all goes well, you will pass all
the tests, thus confirming your cluster setup is complete and ready to run
computations.

Figure 8. All systems go—cluster is ready to rock and roll.

https://secure2.linuxjournal.com/ljarchive/LJ/127/7462f7.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7462f7.large.jpg

The OSCAR Toolkit is easy to install and, in general, works with most hardware.
However, if you run into problems, two mailing lists are available for help. The
oscar-users list is the first place you should ask questions. Most of the core
team frequently reads the list, and other users help out too. However, if you
have questions regarding the development of OSCAR, there is the oscar-devel
list. Both lists are closed lists; you need to subscribe before you can post to
them.

 New Features in OSCAR 4.0

We are planning to include various features in this upcoming release. They are
partitioned into four main categories: NEST, node groups, Linux distributions
and SIS.

NEST (Node Event and Synchronization Tools) is used to ensure that OSCAR
packages are in sync with their centrally stored configurations across all the
cluster nodes. Currently, when you install a new cluster node, post_install
scripts for OSCAR and all packages have to be run on all the cluster nodes
regardless of whether they need to. Although this model has worked on a
medium scale, clearly a scalability limitation is imposed by it. The biggest
change with NEST is that package configuration will be pulled from the server
as opposed to being pushed to the clients. Operations will be executed only if
they are necessary, which is a more elegant way than the brute-force execution
scheme we are employing presently.

Node groups are arbitrary groupings of nodes in the cluster. With this new
feature, it is possible to install and manage OSCAR packages selectively for
these groups. In the upcoming release, we plan to support only the server and
client node groups. In the future, however, users will be allowed to define their
own groups.

One of the key features that defines OSCAR is our support for several Linux
distributions. With the new release we hope to introduce support for Fedora
Core 2 and 3, Red Hat Enterprise Server 3.0 and Mandrake 10. Supporting these
distributions will also introduce support for IA-64 and x86-64 architectures.

System Installation Suite (SIS), which includes SystemImager, is the collection of
programs that performs the image deployment of an OSCAR system. There are
two main SIS-related improvements. First is the disk type autodetection.
Traditionally, OSCAR cluster images are created with one type of hard disk in
mind (either IDE or SCSI). With this OSCAR-specific patch, you can use the same
image to deploy on different machines with different types of hard disks, as
long as the base hardware is similar.

Second, a tool is available so users can use specific kernel modules for booting
the nodes for imaging. Sometimes it is difficult to get newer hardware to work
with OSCAR, because the SIS kernel boot image does not have the supported
drivers. With this tool, you can use an existing kernel with known working
modules as the SIS boot kernel and use that to boot up your client nodes so
they can be imaged. This feature will be included in the next SystemImager
development release, which we hope to include in OSCAR 4.0.

 Creating Packages for OSCAR

OSCAR supplies packages for commonly used cluster-aware applications. They
are simply RPM packages with corresponding metafiles and installation scripts.
These packages are created and maintained by the OSCAR core team and
package authors. If there is an application you would like to install on your
cluster, but did not find it available from OPD (OSCAR Package Downloader),
please create a package for it. The OSCAR team is open to contributions and
possibly even hosting an OSCAR software package you might create. The team
extends this invitation to software developers too.

OSCAR packages reside in package repositories, which are decentralized Web
spaces provided by the package authors to host the package files. The URIs of
these repositories are stored in a master repository list.

Creating OSCAR packages is generally a straightforward process. If an RPM is
readily available, you are already halfway done. What remains is to create some
files to store metadata about the package/RPMs and also scripts to propagate
configuration files for the entire cluster. This is relatively easy to do because
certain assumptions can be made about an OSCAR cluster.

If, however, an RPM package is not currently available, you need to package the
application in RPM format before continuing. Creating an RPM may or may not
be easy, depending on the complexity of the application. You need to create a
spec file and build the RPM(s) and corresponding SRPM with the source tarball.

The first OSCAR package that the Genome Sciences Centre (GSC) has put out is
for Ganglia, a cluster monitoring system. We have started working on our
second package, which is for Sun Grid Engine, an open-source batch scheduling
system sponsored by Sun Microsystems. This should be available from OPD at
the GSC OSCAR Repository at a later date.

 Bioinformatics Applications and OSCAR Cluster

The most commonly used bioinformatics program is BLAST, a sequence
alignment/search tool. Querying genetic databases with multiple gene
sequences is highly amenable to parallelization; it is very easy to split this

problem into many sub-jobs, with each sub-job querying the database with one
set of input. Solutions exist that perform such database/query splitting for you,
most notably the open-source mpiBLAST as well as the commercial version
from Paracel. Parallelized versions of BLAST scale quite well but, of course,
reach a point where adding more nodes simply does not increase performance
due to the overhead of starting separate and smaller jobs on multiple nodes.

FPC is another application we use a great deal and is used for assembling,
editing and viewing fingerprint-based physical maps. The original parallelized
version of this application was developed at the GSC, but it was not batch
system-aware. We recently have integrated parallel FPC with Sun Grid Engine so
that users can easily request a specific number of nodes to run this application.

We also are developing a peer-to-peer application called Chinook for sharing
bioinformatics services. Currently, it is still under development, and we are
working on integrating it with our cluster. This potentially could link up grids in
the future and provide an alternative to the Globus toolkit.

Currently, our 200-node cluster is being heavily used to discover and classify
regulatory elements in the human genome. The human genome consists of
roughly 30,000 genes, and we are employing different algorithms to scan each
gene. Genes are grouped into batches of 1,500, and a typical run would take
about four days on an Opteron 2.0GHz machine. Without cluster technology,
this kind of research would not be possible.

 Conclusion

The OSCAR Toolkit has come a long way since its first release. More and more
people have found it easy to use and deploy—the key to getting clustering
technology more widely adopted. Bioinformatics will continue to grow with
high-performance computing. Soon, it is likely that cluster toolkits geared
toward the bioinformatics community will become more widely available—a
solution that includes all the tools for running parallel bioinformatics
applications and is easy to install and deploy.

 Acknowledgements

The author would like to thank Mark Mayo, Asim Siddiqui and Steven Jones for
giving him the opportunity to work on the Linux cluster at the GSC and for
identifying OSCAR as the tool to use. The author also would like to thank the
OSCAR core team, developers and users for creating a great community for
sharing HPC knowledge and information. Last, but not the least, the folks at
NCSA who contributed much time and effort into the OSCAR Project. Personal
thanks to Jeremy Enos, Renï¿½Warren and Martin Krzywinski for providing
valuable comments and suggestions for this article.

Resources for this article: /article/7760.

Bernard Li is a High-Performance Computing Specialist at Canada's Michael
Smith Genome Sciences Centre. He spends time managing the Linux cluster
infrastructure and integrating bioinformatics applications with the cluster. He is
a core developer for OSCAR and a fan of Sun Grid Engine. He can be reached at
bli@bcgsc.ca.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/127/7760.html
mailto:bli@bcgsc.ca
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/127/toc127.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Scientific Visualizations with POV-Ray

Leigh Orf

Issue #127, November 2004

With a little work, the Persistence of Vision Raytracer (POV-Ray) can be adapted
to create stunning three-dimensional imagery from floating-point scientific data
files.

I am a meteorologist at Central Michigan University doing research with
collaborators at the University of Illinois on the behavior of supercell
thunderstorms, the long-lived rotating monsters that wreak havoc across the
Great Plains of the United States every spring. My primary tool for studying the
behavior of these fearsome storms is a numerical model called NCOMMAS, a
computer application written in FORTRAN 90 that uses the equations of physics
to emulate the three-dimensional state of the atmosphere over time. This
model produces an immense amount of data over the course of a four-hour
thunderstorm simulation, on the order of 200GB, even when using a lossy
compressed history file format. One of the great challenges I face in my
research is finding ways to visualize this data in a way that provides scientific
insight into the physical nature of the simulated storm.

One way to visualize 3-D data is to use a raytracer, a computer application that
simulates the behavior of light interacting with virtual objects in three
dimensions to create a bitmapped image (Figure 1). This bitmapped image can
be displayed on a computer screen and/or saved to disk in an image format
such as PPM or TIFF. The Persistence of Vision Raytracer, POV-Ray for short, is a
popular open-source raytracer that caught my attention while I was working on
my doctoral thesis at the University of Wisconsin in the mid-1990s. At the time, I
was looking for software to visualize my 3-D model data of microbursts, severe
downdrafts that sometimes descend from thunderstorm clouds. Being
accustomed to the shared-source nature of the academic world and being a
poor grad student, I was looking for free software distributed in source code
form that I could download and modify to fit my own specific needs. POV-Ray
was the logical choice for me then, and it continues to suit my needs today in
creating raytraced representations of my research data.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Figure 1. An aerial view of the whole supercell thunderstorm cloud from a distance of about
30 kilometers, rendered with POV-Ray.

Rendering scientific data isn't the task for which POV-Ray was designed,
however, and few researchers are using POV-Ray for rendering scientific data.
Other raytracing packages geared toward the researcher doing work with
numerical models exist, but they are proprietary and expensive. In this article, I
outline the process of modifying POV-Ray so that isosurfaces of 3-D scientific
data can be rendered natively.

 Getting the Source

Although POV-Ray is distributed in binary form for Linux, Mac OS and Microsoft
Windows, you need to obtain the source code in order to apply patches and
make further customizations. I am using the latest version of POV-Ray available
as of this writing, version 3.5. You need to select the Unix/Linux/Generic Source
Code option from the POV-Ray download page. In addition, you need to obtain
Ryouichi Suzuki's Density File extension patch (see the on-line Resources),
which actually is a Zip file containing replacement source code for a handful of
the POV-Ray files. The file pov35dfjs.zip should be unpacked in the
povray-3.50c/src directory, where 13 files will be overwritten.

 Scenes and Isosurfaces

POV-Ray works by reading a scene description file that contains all of the
information necessary to create a bitmapped image. POV-Ray has its own scene
description language, which is well documented on the POV-Ray Web site. If
you never have used a raytracer before, I recommend familiarizing yourself
with raytracer basics and POV-Ray's scene description file before making
modifications to the source.

Items rendered in POV-Ray are called objects. Examples of objects include Box,
Sphere, Torus and Plane. The user specifies where objects exist in the scene,
what parameters to use in creating the objects, what color to make the objects,
lighting parameters and so forth. These specifications are made in a scene
description file, sometimes called a pov file because of the .pov suffix, which is
a plain-text file parsed by POV-Ray at runtime.

https://secure2.linuxjournal.com/ljarchive/LJ/127/7486f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7486f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7486f1.large.jpg

One versatile object is the isosurface, a 3-D shape whose surface represents
points where a function's value is constant. The constant value of the function
is chosen by the user. POV-Ray contains many predefined objects that actually
could be represented as isosurfaces. For instance, the following section from a
scene description file would render a gray sphere with a radius of 0.7 units,
centered at the origin, which is Cartesian gridpoint (0,0,0):

sphere
{
 <0,0,0>, 0.7
 pigment {rgb .5}
}

The same object could be rendered as an isosurface object in the following
way:

#declare R = 0.7
isosurface
{
 function {x*x + y*y + z*z - R*R}
 pigment {rgb .5}
}

This works because the mathematical formula describing a sphere of radius R
is:

x2 + y2 + z2 - R2 = 0

This versatility of the isosurface object makes it the object of choice for my
thunderstorm images.

 Density Files

In the sphere example, a mathematical function was used to calculate the
isosurface value. My thunderstorm numerical model data cannot be
represented as a mathematical function; instead, it is represented as three-
dimensional floating-point arrays containing model variables such as
temperature, wind speed and cloud concentration at each grid location (Figure
2).

https://secure2.linuxjournal.com/ljarchive/LJ/127/7486f2.large.jpg

Figure 2. An example of multiple isosurfaces, focusing on a region of the supercell called the
wall cloud. The yellow isosurfaces in the foreground, which are located below the wall cloud,
represent where tornado-like swirling motion is occurring.

POV-Ray 3.5 has a feature called a density file that allows for the mapping of
functions represented as gridpoint values. The POV-Ray documentation
describes a density file as follows: “The density_file pattern is a 3-D bitmap
pattern that occupies a unit cube from location <0,0,0> to <1,1,1>. The data file
is a raw binary file format created for POV-Ray called df3 format.”

Density files can be used as functions passed as an argument to the isosurface
object. Here is an example of a density file being used for isosurface rendering:

#declare DENSFUNC=function
{
 pattern
 {
 density_file df3 "cloud.df3"
 interpolate 1
 }
}
isosurface {function { 0.1 - DENSFUNC(x,y,z) }

https://secure2.linuxjournal.com/ljarchive/LJ/127/7486f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7486f2.large.jpg

In the above example, an isosurface with value 0.1 would be created from the
cloud.df3 file using a trilinear interpolation scheme (more on interpolation
below).

The density file format is strict, and the data values are represented as 8-bit
data (unsigned short integers ranging from 0 to 255) scaled internally to range
from 0.0 to 1.0. Because my thunderstorm data is 32-bit floating-point data, it is
not feasible to use the density file format with the stock POV-Ray 3.5.

Enter Ryouichi Suzuki, who has been providing POV-Ray with unofficial add-on
code since 1996. He provided the first patches to POV-Ray 3.0, which
introduced the isosurface object, now a standard object in version 3.5. Suzuki's
code, contained in the Zip file referenced above, contains routines that expand
the functionality of POV-Ray density files, including the option of rendering
floating-point density file data.

When using density files as functions one must consider that although a
mathematical function is a continuous expression—it is defined for any
floating-point value of x, y and z spatial coordinates—a density file is a discrete
set of data referenced by integer array indices. Interpolation must be done for
referencing space in between gridpoints when rendering a scene. The two
interpolation methods available are trilinear and tricubic spline. Trilinear
interpolation is fast but usually does not produce as smooth an interpolation as
does tricubic spline interpolation.

 Getting Model Data into POV-Ray

After patching the POV-Ray 3.5 code with Suzuki's density file code, you can
render floating-point isosurfaces if you adhere to the df3 format or Suzuki's
extended format. In my case, I had hundreds of gigabytes of HDF (hierarchical
data format) model data, which is designed specifically for numerical models.
Because I am interested in not only producing a few isosurface images but
making animations from hundreds, sometimes thousands, of these images,
writing an HDF to df3 converter for each of these files was not a viable option.
Hence, I started looking closely at the POV-Ray routines that handle density file
data with the hope that I could modify the code to read HDF data.

It was important to me that the modifications I made to POV-Ray would not
cause a loss of functionality or break compatibility with the unpatched version. I
achieved this goal by adding some new objects, referenced in the scene
description file, that could be parsed and rendered by my patched version,
while leaving all other objects alone.

The main piece of code I modified is found in pattern.cpp, which contains the
Read_Density_File routine. This routine, as you might have guessed, reads

density file data into a three-dimensional array. Using this routine as a
template, I created a new routine, Read_Hdf_File, to read my history file data
into POV-Ray. This is where most of the modification of the POV-Ray code
needs to be made to adhere to your own data format. An abbreviated version
of Read_Hdf_file is shown in Listing 1.

Listing 1. Abbreviated Read_Hdf_File Listing from pattern.cpp

void Read_Hdf_File (DENSITY_FILE * df)
{
 Locate_Density_File(df->Data->Name);
 df->Data->Type = 1; //floating point data
 Open_HDF_File(df->Data->Name);
 //povray needs array dimensions
 Read_HDF_File_Geometry(nx,ny,nz);
 df->Data->Sx = nx;
 df->Data->Sy = ny;
 df->Data->Sz = nz;
 //this array will contain density file data
 Allocate_Memory(mapF,nx,ny,nz);
 //read variable into mapF array
 Get_HDF_File_Data(Var,mapF,nx,ny,nz);
 //density file pointer now points to model data
 df->Data->DensityF = mapF;
}

The function of Read_Hdf_file is to read HDF floating-point data into mapF, a 3-
D array of floats, where it now is ready to be manipulated as a density file. I
wrote a separate piece of code called history.c, which contains all of the HDF I/
O routines referenced in pattern.cpp. Your data file format will require its own
format-specific code to read your 3-D data into POV-Ray.

A few more files were modified in order for POV-Ray to recognize the new HDF
file format natively and to allow for the rendering of more than one model
variable per scene. Table 1 contains a list of the files modified and a brief
description of what was done to each file.

Table 1. A listing of modified files to accommodate model data into POV-Ray

and a brief description of what was done.

File Modification

pattern.cp
Get_HDF_File_Data routine added, which reads model data

into memory.

pattern.h Add declaration of Read_Hdf_File.

parstxtr.cpp Add case statement block for HDF_TOKEN.

tokenize.cpp Add HDF_TOKEN to Reserved_Words array.

frame.h Add char *Var1 to Density_file_Data_Struct structure.

The HDF file format allows for more than one variable to be stored in each file,
unlike the density_file format. In my case, each HDF file is a snapshot of the
model state at a given time and contains 12 3-D variables per file. It often is
illustrative to look at multiple variables, such as cloud, rain, hail and snow,
together in one scene. I achieved this by creating a new token representing the
HDF file format, called HDF_TOKEN (distinct from DF3_TOKEN representing the
original df3 format), and added a new character array called Var to the
structure Density_file_Data_Struct. Var is assigned in the scene description file
and is passed as an argument to the HDF routines to specify what model
variable to select. In order to parse the variable name (represented as a
character string), I added an additional case statement to the
Parse_PatternFunction routine in parstxtr.cpp (Listing 2). Notice the addition of
Parse_Comma and Parse_C_String, which grab the variable to be read.

Listing 2. The HDF_TOKEN case requires extra parsing to allow for the

specification of which variable to raytrace. This code snippet is found in the

Parse_PatternFunction routine in parstxtr.cpp.

EXPECT
 CASE (DF3_TOKEN)
 New->Vals.Density_File->Data->Name =
 Parse_C_String(true);
 Read_Density_File(New->Vals.Density_File);
 EXIT
 END_CASE
 CASE (HDF_TOKEN)
 New->Vals.Density_File->Data->Name =
 Parse_C_String(true);
 Parse_Comma();
 New->Vals.Density_File->Data->Var =
 Parse_C_String(true);
 Read_Hdf_File(New->Vals.Density_File);
 EXIT
 END_CASE

 The Scene Description File

All of the pieces are now in place to construct a scene description file to be
interpreted by POV-Ray. I used the example found on Suzuki's density file
extension Web page as a template and modified it to fit my needs. Listing 3
contains the full scene description file used to render an isosurface of cloud
concentration with a sky-blue background and a tiled surface, shown in Figure
1. Starting at the top, the #version statement is required in order for this
unofficial version of POV-Ray to function. The following nine #declare
statements specify the Cartesian coordinates that bound the box containing
the isosurface, as well as scaling factors.

File Modification

parse.h Add HDF_TOKEN to TOKEN_IDS.

Listing 3. cloud.pov

#version unofficial dfe 3.5;
#include "colors.inc"

#declare x0 = 0.0;
#declare x1 = 700.0;
#declare y0 = 0.0;
#declare y1 = 600.0;
#declare z0 = 0.0;
#declare z1 = 80;

#declare scalex = (x1-x0+1);
#declare scaley = (y1-y0+1);
#declare scalez = (z1-z0+1);

#declare R = 0.7;
#declare G = 0.7;
#declare B = 0.7;

#declare AMBIENT = 0.5;
#declare DIFFUSE = 1.1;
#declare SPECULAR = 0.3;
#declare ROUGHNESS = 0.01;
#declare BRILLIANCE = 1.0;

camera {
 up <0,0,1>
 sky <0,0,1>
 right <3.0,0,0>
 direction <1.0,0,0>
 location <420,70,70>
 look_at <370,300,90>
}

light_source {<100,100,100> color Gray25 shadowless}
light_source {<400,200,30> color Gray20 }
light_source {<1000,-500,150> color Gray25 }
light_source {<-400,-500,150> color Gray25 }

#declare QCFUNC = function { pattern{
 density_file hdf "supercell.ck10990.hdf","QC"
 interpolate 2 //tricubic spline
 frequency 0
scale <scalex,scaley,scalez> } }

#macro QCISOSFC(iso,trans)
isosurface{ function{ -QCFUNC(x,y,z) }
threshold -iso
max_gradient 0.0002
contained_by{box{<x0,y0,z0>,<x1,y1,z1>}}
texture{ pigment{color rgbt<R,G,B,trans>}
finish{ambient AMBIENT diffuse DIFFUSE
 specular SPECULAR roughness ROUGHNESS
 brilliance BRILLIANCE} }
no_shadow
}
#end

QCISOSFC(0.0002,0.0) // render cloud

box { <x0,y0,z0> <x1,y1,z0> // tiles 5km square
pigment {checker color NewTan,
 color .90*NewTan scale 50}
finish {ambient 0.5 diffuse 0.5} }

background {SkyBlue} // what else?

Continuing through the scene description file, the color and finish parameters
are declared, and the camera and lighting parameters are set. The lines that
follow contain the important bits for creating the isosurface. QCFUNC is

declared as a function that uses the HDF file supercell.ck10990.hdf as a source
of data; it chooses the variable QC (representing cloud concentration) within
the file to render. Tricubic spline interpolation is chosen, and the entire domain
is scaled so that all spatial indices, such as camera location and light location,
coincide with array index values of the data. By default, POV-Ray's domain
ranges from 0.0 to 1.0 in all three directions.

I created a macro called QCISOSFC, which takes as arguments the value of the
isosurface I wanted to render and the level of transparency of the isosurface.
Transparency is a useful isosurface property when rendering two isosurfaces
where one exists inside another. For example, it is useful to render a
transparent cloud that contains an isosurface of hail concentration, because
hail often is contained within a thunderstorm cloud. QCFUNC, defined above, is
selected as the isosurface function to render. The chosen isosurface binds a
volume of cloud concentration greater than the chosen isosurface value of
0.0002.

The max_gradient parameter basically tells POV-Ray how much work it needs to
do to find the isosurface. Technically, it tells POV-Ray what maximum gradient
(largest change over distance) the function representing the isosurface data
contains in the vicinity of the chosen isosurface. It is a number that must be
chosen carefully. Too low a value produces an isosurface with holes or one that
does not render at all; too large a value causes POV-Ray to run for a much
longer time than is necessary. Some experimentation is required to find an
appropriate value for max_gradient. I chose a value of 0.0002, which may seem
small; however, cloud concentration ranges from 0.0 to about 0.01. POV-Ray
warns you after rendering an isosurface with too large or small a value of
max_gradient and suggests a value it deems appropriate after rendering.

 Making Pictures and More

In order to compile with your changes, you may need to make some minor
modifications to src/Makefile, which is generated once you run configure
from the top-level POV-Ray directory. This is the case if you are using external
libraries for your history file reading routines or if you've written a separate
piece of code to handle file I/O.

Once compiled, you can invoke POV-Ray from the command line. The following
command would read from cloud.pov and create a 600×400 anti-aliased PPM
file, displaying to the screen as it rendered:

/home/orf/povray-3.50c-orf/src/povray +D \
Input_File_Name=cloud Width=600 Height=400 \
Antialias=on Output_File_Type=P

Once your data has rendered successfully with POV-Ray, you have POV-Ray's
extensive set of configurable options to choose from to render your scene
exactly the way you want. If you have data that changes over time, making
animations is straightforward and rewarding. I have written Python scripts to
invoke an instance of POV-Ray on each of the processors on my small
renderfarm, where each processor works concurrently on a different model
time. The resulting PPM files then are joined together to make animations,
using mjpegtools. See my research page for some animations. I also have
created stereo images and animations for display on our department's GeoWall
system. Stereo pair generation is trivial with POV-Ray and truly can give you a
whole new perspective on your data. Getting POV-Ray to work with my model
data has opened the door to many exciting possibilities for me, and I hope that
it will for you, too.

Resources for this article: /article/7754.

Leigh Orf is an Assistant Professor of Atmospheric Science at Central Michigan
University and a long-time Linux user. His research interests include making
realistic simulations and visualizations of thunderstorms using massively
parallel Linux clusters. When not working, he enjoys brewing his own beer,
communicating via ham radio, playing the saxophone and going on camping
trips with his wife, Annie. He can be reached at leigh.orf@cmich.edu.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/127/7754.html
mailto:leigh.orf@cmich.edu
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/127/toc127.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Improving Application Performance on HPC Systems with

Process Synchronization

Paul Terry

Amar Shan

Pentti Huttunen

Issue #127, November 2004

Hey, cluster node, don't work on that housekeeping task right now—we're all
waiting for you to finish your part of the MPI job! Here's a scheduling policy
designed for cluster efficiency.

One would expect that doubling the processing power available to an
application would double the application performance or cut the run time in
half. Unfortunately, HPC users know this is far from true, with actual
performance efficiency dropping to as low as only 5% of a system's theoretical
peak performance. HPC researchers and application developers have spent
and continue to spend much effort trying to find the source of these
performance losses and boost sustained application performance. When we
set about developing the Cray XD1 system, we joined the ranks of researchers
attacking this problem. This article describes how we learned from those who
went before us and how we built on that knowledge to develop a new Linux
scheduling-based solution that promises to improve real application
performance significantly on Linux HPC systems.

The majority of research has focused on the structure of the HPC applications
themselves. Various research teams attempted to improve the efficacy of
caching, looked for ways to minimize interprocessor communications and
explored a variety of similar measures, but each strategy offered performance
gains of only a few percent. Another area of research has shown particular
promise, however. By understanding the interaction between the HPC
application and the system background processes, one can find ways to modify
this interaction to improve performance.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Where Does the Performance Go?

In a seminal paper documenting their research into this interaction,
researchers Petrini, Kerbyson and Paking of the Los Alamos National Labs (see
the on-line Resources) quantified the loss in application performance caused by
what they deemed “noise”—the interaction between large multiprocess MPI
jobs and background processes. They observed that housekeeping tasks, or
noise, delayed individual processors from reaching MPI barriers
(synchronization points in the application) and caused all other processors to
wait while one processor finished up its housekeeping. This resulted in wasted
cycles on all other processors.

The top half of Figure 1 illustrates this interaction and how it results in lost
performance. The processes illustrated are part of a parallel job, each running
on a separate processor and periodically synchronizing through the use of MPI
barriers. In the first part of the computation, Process 1 is delayed because the
node's scheduler pauses process execution to run background processes, such
as those found on every Linux or UNIX node. Processes 2 and 3 also are
delayed. Repetition of this pattern results in substantially reduced sustained
application performance. The magnitude of the impact is a function of the
frequency with which barriers are encountered and the number of processors.

Petrini and colleagues quantified this loss of performance running SAGE, a
compressible Eulerian hydrodynamics code, on their HPC system, named ASCI
Q. ASCI Q is a cluster of 2,048 HP ES45 nodes, where each node is a four-way
SMP. Petrini, et al., observed that better performance was obtained when they
restricted SAGE to run on only three of the four processors in the SMP when
more than 256 nodes were utilized. They theorized that this result was caused
by background noise, and the theory was verified by eliminating many of the
sources of noise and observing the improvement in performance.

This research points to lack of process synchronization and wait time as the
culprit that is robbing fine-grained and highly parallel HPC applications of up to
50% (and perhaps more) of their potential performance. Unfortunately, a
means to stop this thievery still was not at hand. The method employed by
Petrini, et al., to identify the culprit—restricting the system's freedom to run
housekeeping tasks—doesn't present a practical solution for most HPC
applications. The prospect of relegating one-quarter of the processors on an
HPC system to running housekeeping tasks is not palatable to many HPC sites.
In addition, many background processes cannot be removed, limiting the
performance gain achievable using this approach.

 Recovering the Missing Performance

When we set out to build a new high-performance computer, we also set out to
find a way to prevent this performance theft. We considered a new approach
using the Linux scheduler to synchronize scheduling of MPI jobs and
housekeeping tasks. Previous work and our research suggest that this new
synchronized scheduling approach can deliver a 50% or greater performance
boost to many fine-grained parallel applications running on 32 or more
processors.

 Implementing a Synchronized Scheduling Policy

Our approach was to create a new Linux scheduling policy. To achieve the
desired gains, this policy must synchronize the schedulers on all nodes in a
Linux HPC system to ensure that MPI processes run concurrently on all
processes and that Linux housekeeping processes execute at the same time.
Thus, the scheduler must have a means to achieve global synchronization, as
illustrated in Figure 1. To achieve global synchronization, we designed a feature
in the communications processor to synchronize the clock in each processing
node.

The new Linux scheduler policy defines a scheduling frame of 128 time slots,
120 of them reserved for application execution and eight for housekeeping
processes. Schedulers on different processors are able to align their scheduling
frames by exploiting a globally synchronized clock, which guarantees sub-
microsecond variation in time between nodes in the system. At any moment in
time, all processors either are executing the HPC application or running
housekeeping processes (bottom half of Figure 1).

This approach to process synchronization is scalable to high processor counts,
because scheduling decisions are made locally on each node. This provides a
significant boost to sustained application performance by eliminating wasted
CPU cycles caused by waiting at barriers.

https://secure2.linuxjournal.com/ljarchive/LJ/127/7690f1.large.jpg

Figure 1. An Example of Asynchronous and Synchronous Execution of Processes

The synchronized scheduler is implemented as a new policy augmenting the
three existing policies in the scheduler associated with the Linux kernel. The
Linux scheduler is invoked when the process being executed is blocked or
voluntarily gives up the CPU, when the processor receives an interrupt or at the
end of a 10-millisecond timeslice. The scheduler selects the next process to run
based on the scheduling policy applicable to that process and its priority. With
the new synchronization policy in place, Linux then selects from one of the
following scheduling policies, two for real-time processing and two for
conventional time-sharing processes, listed in order of decreasing precedence:

1. FIFO (first in, first out): a process marked FIFO runs until it relinquishes
control of the CPU. This priority is used for short duration, real-time
system processes. FIFO processes run ahead of others.

2. Round-robin: a process using this policy receives a 10-millisecond
timeslice, in turn. It is available for real-time processing.

3. Synchronized: we added the synchronized policy to enable synchronized
scheduling of processes in a multiprocessor batch job. The workload
management system marks each process as using this policy when it is
started. These processes and their offspring gain the benefits of
synchronized scheduling.

4. Priority: priority scheduling is the familiar time-sharing mechanism known
to Linux users. Processes using this scheduling policy have priorities
associated with them and receive time proportional to their priority. All
user processes and virtually all system processes run under this policy.
The scheduler selects the next process to run from the policy class with
the greatest precedence. FIFO and round-robin system processes run

https://secure2.linuxjournal.com/ljarchive/LJ/127/7690f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7690f1.large.jpg

first. Processes marked for synchronized scheduling run before processes
using the normal priority scheduler.

The new synchronized scheduling policy creates a scheduling frame that
dictates when batch jobs and other user and system processes are executed.
The frame includes a predefined number of time slots that are cycled through
in sequence. A time slot represents 10 milliseconds (one system timer tick in
Linux), during which the process assigned to the time slot is executed. The
current implementation has 128 time slots, 120 for the execution of batch jobs
and eight for other processes. During the latter time slots, the synchronized
scheduling policy indicates there are no runnable batch processes, and the
conventional priority scheduling policy takes over for all other housekeeping
processes. When no batch jobs exist, the behavior of the Cray scheduler is
indistinguishable from the conventional Linux scheduler.

The number of time slots in a scheduling frame is configurable, but it must be a
power of two. The ratio of time slots reserved for batch processing versus other
processes also may be adjusted. Figure 2 illustrates a typical scheduling frame,
with the locations of batch time slots shown in red and housekeeping time slots
in grey.

Figure 2. The Time Slots (128) with Eight Reserved Time Slots

A scheduling frame is created when the first batch process is started on a node.
All batch time slots are assigned to that process. The creation of additional
batch processes results in an even distribution of time slots across processes. If
n batch processes are created, the first batch process receives the first 120/n
time slots, the second receives the next 120/n time slots and so forth. The
synchronized scheduler thus is able to support batch jobs that require multiple
processes on each CPU.

A batch process executes to the end of its allotted time, as long as it makes no
blocking or CPU-yielding system calls. If the batch process yields the CPU,
perhaps as a result of making a blocking system call, another batch process is
scheduled to run. If there are no runnable batch processes, control passes to

https://secure2.linuxjournal.com/ljarchive/LJ/127/7690f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7690f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7690f2.large.jpg

the conventional priority scheduler to run housekeeping processes. Of course,
batch processes regain the CPU if they are unblocked by the handling of an
interrupt.

 Alignment of Scheduling Frames between Processors

So far, we have discussed only scheduling of batch jobs and system processes
within a single node. However, to stop the performance thievery, this
synchronized scheduler must work across all processors. Here, we encounter a
critical system design criteria that makes this synchronized scheduler approach
possible—the availability of global time synchronization. In our design, global
time synchronization is carried out by communications processors designed
within the HPC system. These processors offload communications processing
from the application processors. Communications processors also run a time
synchronization protocol to achieve global clock synchronization. Tight time
synchronization can be achieved because the communications processors have
control over packet scheduling and jitter—the difference in time between any
pair of processors is less than 1 microsecond. A further advantage of delegating
time synchronization to the communications processors is this load is removed
from the processors carrying the application workload, leaving more time for
application processing and further reducing interrupts to the application
processors.

The time synchronization protocol includes additional fields for time slot
alignment. The protocol uses a master-slave paradigm, where one node acts as
the source of the time and time slot information and all other nodes in the
system synchronize themselves to the master node's clock. The time
synchronization packets received from the master identify the time slot being
executed and the time elapsed since the start of the time slot, enabling precise
alignment of scheduling frames across the entire HPC system.

 Performance Implications

This synchronized scheduler delivers synchronized execution of the processes
in a parallel application. How much performance degradation can be avoided
or how much potential performance can be gained is a function of how
frequently the application uses barriers and/or collective operations, how much
time is taken by system housekeeping processes and the number of processors
employed by the application.

Our research indicates significant speedup can be achieved. Figures 3 and 4
show the theoretical speedup that can be achieved through the use of the
synchronized scheduler, relative to the conventional priority scheduler. Figure 3
assumes that background processing requires 1.5% of the CPU, and Figure 4
assumes that 6.25% of the CPU is consumed by background processing—this is

a realistic metric on most clusters. Curves are shown for applications
encountering an average of 100, 200 and 300 barriers per second.

Figure 3. Theoretical Speedups with Process Synchronization with 1.5% Dæmon CPU
Utilization

Figure 4. Theoretical Speedups with Process Synchronization with 6.25% Dæmon CPU
Utilization

As the number of processors increases, the performance gain from the
synchronized scheduler increases and asymptotically approaches a maximum
value. This reflects the fact that performance doesn't continue to degrade with
the conventional scheduler. After a certain processor count is reached, the
probability of at least one processor being delayed by housekeeping increases
to 100%. The addition of more processors does not significantly add to the
application delay encountered at barriers.

https://secure2.linuxjournal.com/ljarchive/LJ/127/7690f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7690f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7690f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7690f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7690f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7690f4.large.jpg

 Conclusions

By focusing on the interactions between the HPC application and the system
background processes, HPC researchers identified a major culprit for
performance losses in parallel applications. Additional research identified ways
of preventing this thievery, but none to date have provided successful, real-life
implementations. Global process synchronization using the Linux scheduler
eliminates wait time due to noise and promises significant performance gains.
By looking beyond the application and into the role of the rest of the HPC
system, we believe we have found a scalable, real-life implementation. With
Linux process synchronization using a global clock synchronization and Linux
running on each processing node, the Cray implementation ensures application
processes run concurrently on all processors and housekeeping is performed
concurrently on all processors and bounded in time. Our process
synchronization solution can prevent performance theft and increase
application performance for fine-grained highly parallel applications running on
32 processors or more by up to 50%.

Resources for this article: /article/7756.

Dr Paul Terry is the Chief Technology Officer for Cray Canada, Inc., previously
OctigaBay Systems, which was acquired by Cray in April 2004. He is a
technology strategist for innovative computing architectures and is responsible
for establishing the company's technology vision and leadership.

Amar Shan, Director of Product Management, Cray, Inc., is responsible for
introducing Cray's leading-edge technical innovations and creative business
solutions into the marketplace. He has more than 20 years' experience in the
computing and telecommunications industries in product management,
development and architecture roles.

Pentti Huttunen, Benchmarking Specialist at Cray, Inc., is responsible for
researching parallel computing technologies and optimizing applications to
ensure that they are running efficiently on a variety of platforms at Cray, Inc.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/127/7756.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/127/toc127.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 2004 Readers' Choice Awards

Heather Mead

Issue #127, November 2004

We know the timing of this article puts us at a disadvantage. It's November of a
US presidential election year, and it's hard for our Readers' Choice awards to
compete. But, we know you've been waiting to find out whether C beat C++ for
Favorite Programming Language and where Gentoo fell in the top three in the
Favorite Distribution category. It's time for the awards.

 Favorite E-Mail Client

1. Mozilla
2. Ximian Evolution
3. KMail

Once again, the top three choices in this category were GUI-based clients. The
only difference between this year's top three and last year's is the order:
Mozilla jumped to first place from third, Evolution dropped to second and KMail
dropped to third. The fifth-place finisher came from the write-in votes—the
new Mozilla Thunderbird was only a few votes shy of fourth-place mutt this
year.

Favorite Distribution

1. Debian GNU/Linux
2. Mandrakelinux
3. Gentoo

Debian won first place for the second year in a row, picking up almost 300
more votes than second-place Mandrakelinux. Last year's number two, Red
Hat, fell to fourth this year, as Gentoo cracked the top three to come in third.
The most popular write-in vote was Red Hat's all-free, community-oriented
Fedora, coming in at number eight.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Favorite Desktop Workstation

1. Homemade
2. HP xw8200 Linux Workstation
3. Monarch Athlon 64 System Special

Seventy-five percent of voters agreed with the sentiments of the reader who
voted for his “bastard child of desire and affordability”, the ever-popular
homemade desktop workstation. Like proud parents rattling off the list of
talents and skills their offspring possess, voters wrote in the entire list of
components in their homemade systems. Other write-in voters echoed the
opinion of LJ contributing editor Greg Kroah-Hartman, who selected the Apple
Power Mac G5, well supported in Linux, as his desktop of choice in this year's
Editors' Choice Awards.

Favorite Database

1. MySQL v4.0
2. PostgreSQL
3. Oracle 9i DB

This year's top three favorite databases were a repeat of last year's top three.
Although the Editors picked PostgreSQL as their favorite back in August,
readers selected MySQL over PostgreSQL by a 2 to 1 ratio. Combined, MySQL
and PostgreSQL own 78% of the votes. Add in Oracle 9i and that percentage
climbs to 83%. So what else are readers using for their database work? SQLite,
GemStone/S and Firebird picked up less than a hundred votes apiece, and
Versant was the most popular write-in vote.

Favorite LJ Column

1. Cooking with Linux
2. Kernel Korner
3. Paranoid Penguin

Ah, Marcel. Like Susan Sarandon, David Bowie and '02 Bordeaux, Cooking with
Linux columnist Marcel Gagnékeeps getting better with age. Whether he's
showing us a new game, recommending a lovely Australian red or
demonstrating a little monitoring GUI, he's always supplying us with useful
information in fun ways.

Most Indispensable Linux Book

1. Linux in a Nutshell, 3rd Edition, Ellen Siever, et al.

2. Running Linux, 4th Edition, Matt Welsh, et al.

3. Advanced UNIX Programming, 2nd Edition, Marc Rochkind

I was beginning to think I'd never see a new title in the top three spots in the
book category—just advancing edition numbers. But after five-plus years, we
finally have a new one. Advanced UNIX Programming by Marc J. Rochkind
landed in third place this year. Yes, it's a second edition of a book originally
published in 1985, but the content is mostly new. The most popular write-in
vote continued to be man pages.

Favorite Backup Utility

1. tar
2. Amanda
3. Arkeia Network Backup v5.2

For another year, tar was by far the most popular backup utility, gathering
votes from 65% of readers who responded. Amanda came in a distant second,
garnering 5% of all votes. On the write-in side, rsync took the top spot. After
that, it was a onesy-twosy game of Bacula, personal shell scripts and
proprietary offerings. This is weird, though: no one said backups are for wimps.

Favorite Audio Tool

1. xmms
2. mplayer
3. Audacity

A bit of a shake-up in the audio category, as last year's number two and
number three tools—noatun and mpg123, respectively—were knocked out by
mplayer and Audacity. xmms remains the clear favorite, however, picking up
just fewer than 50% of the total votes. On the write-in side, KDE's amaroK came
in as the clear favorite, racking up enough votes to tie mpg123 for sixth place
overall.

Favorite Desktop Environment

1. KDE
2. GNOME
3. Window Maker

For several years now, KDE and GNOME have finished first and second,
respectively, with an ever-increasing distance between the two. This year, KDE
received two votes for every one GNOME received. Window Maker holds on to

the number three spot, beating XFce by a single vote. No one said “they all
suck” this year, and the only write-in voter who expressed frustration said he
might try to write his own environment.

Favorite Linux Web Site

1. LinuxFR
2. Slashdot
3. Freshmeat.net

Last year we noted how close voting was in this category, and this year, for the
first time ever, Slashdot isn't the favorite Web site. Granted, only six votes
separated LinuxFR from Slashdot, but has Slashdot lost some of its cachet? Or
is it simply because even hardware vendor news sounds exciting in French?

Favorite Linux Training

1. Linux Certified, Inc., Linux Systems & Network Administration Class
2. SuSE Linux Training
3. Tie: Novell Certified Linux Engineer and Linux Lunacy Cruise

Judging by the numbers, most of our voters aren't into formal training,
preferring instead to use a combination of books, Web resources and, as one
voter put it, “hard knocks”. Among those going the more formal route, Linux
Certified, which offers classes in San Francisco and Boston, was the favorite.

Favorite Distributed File Sharing System

1. BitTorrent
2. Gnutella
3. Red Hat Global Filesystem

In its first year on our official nominee list, BitTorrent claimed first place with no
trouble whatsoever, winning 62% of the votes. Last year's favorite, Gnutella, fell
hard to second place, with just less than 11% of the total. eMule and eDonkey
grabbed most of the write-in votes, except for the person who believes
“communism is wrong”. BitTorrent users can check out legaltorrents.com for
many gigabytes of music, books and movies all released under Creative
Commons licenses.

Favorite Programming Beverage

1. Coffee
2. Water

http://legaltorrents.com

3. Tea

Year after year, what people drink while programming is one of the most hotly
debated categories. Especially among the write-in responses, our voters are
loyal to their beverages beyond belief. Caffeine in all its forms continues its
reign, claiming around 85% of all votes. And who drinks Five Alive? I didn't even
know they made that anymore!

Favorite Embedded Distribution

1. Qtopia
2. MontaVista Linux
3. BlueCat

In its third year on the ballot, the embedded distribution category continued to
gain an increasing amount of total votes. Judging by the write-ins, a lot of
embedded Linux work is done using customized or homemade variations.
Among the commercial variants, the PDA environment Qtopia remains the
favorite with a strong lead, almost twice the number of votes as the second-
place MontaVista. The Open Embedded Project also is attracting a number of
developers.

Favorite Web-Hosting Service

1. RackSpace Managed Hosting
2. Hurricane Electric Web Hosting
3. ServerBeach

With just less than 20% of all the votes, RackSpace is your favorite Web-hosting
service again this year. But most of the votes in this category continue to come
in the form of write-ins, almost 64%. So what are you using? OVH, Speakeasy,
Amen (a French service) and DreamHost all received several mentions. Overall,
Web hosting remains a DIY job among this voting crowd.

Favorite Development Tool

1. GNU Compiler Collection (GCC)
2. Emacs
3. Eclipse

All these vendors are releasing development tools like crazy, but our voters
stick with the basics, thanks anyway. GCC and Emacs combine to claim 33% of
the total votes. After that, it's Eclipse and KDevelop. Among write-ins, vi, vim
and VisualWorks SmallTalk are the most popular.

Favorite Text Editor

1. vim
2. vi and vi clones
3. GNU Emacs

Last year, vim beat vi by almost three times as many votes; this year, it was by
only twice as many. Hmm, I wonder what that could mean? Seriously, what's
the voting process for if not a chance to develop new conspiracy theories?
Coming in at a strong number four is Kate, the KDE Advanced Text Editor. Could
readers finally be ready for a modern user interface in an editor instead of
Meta-x this and Escape-colon-that? Stay tuned.

Favorite System Administration Tool

1. Webmin
2. YaST
3. KDE Desktop Sharing

Be honest now, you all were most anxious about voting in this category, weren't
you? Nothing screams excitement like sysadmin tools. But we're grateful to
have them, that's for sure. Webmin collected barely more than 25% of the total
votes to take first place. On the write-in side, a collection of text editors and
shells claimed most of the votes.

Favorite Server

1. HP Integrity rx4640
2. HP ProLiant DL585
3. SGI Altix 3000

HP claimed first and second place for a combined 35% of all votes in this
category. Last year's first-place finisher, the Altix 3000, fell to third this year. The
write-in votes featured a lot of Dell and IBM server variations. And, of course,
many of you continue to build your own servers.

Favorite Network or Server Appliance

1. Cyclades AlterPath ACS
2. Net Integrator, vMark 1
3. Veritas Storage Foundation, v4.5

Only a few hundred voters expressed a preference in this category. Among
those who did vote, the Cyclades AlterPath ACS was the favorite for a second
year.

Favorite Portable Workstation

1. Monarch Hornet 64 Custom System
2. Linux Certified LC2430 Linux Laptop
3. EmperorLinux Toucan Laptop, vT42p

Laptops continue to dominate this category, although various Zaurus PDA
models made a number of appearances in the write-in section. The big
hardware vendors—Dell, IBM, Sony, Toshiba and Apple—ate up most of the
write-in votes. HP introduced its Linux laptop too late to catch the voting, so
we'll see how they do next time.

Favorite Processor Architecture

1. AMD Athlon
2. Intel Pentium 2, 3 and 4
3. PowerPC

PowerPC and Opteron switched places this year, but only 20 votes separated
the two architectures. Meanwhile, Athlon held on to the top spot for another
year, having received 40% of the total vote count. Intel Itanium picked up the
most write-in votes.

Favorite Office Program

1. OpenOffice.org
2. AbiWord
3. StarOffice

Receiving 72% of the votes, OpenOffice.org is by far this year's favorite office
program. In fact, OpenOffice.org received 2,180 more votes than the second-
place finisher, AbiWord. It's hard to beat office software that makes more
logical sense than its competitors, is compatible with almost everything and, oh
yeah, is free.

Favorite Programming Language

1. C
2. Perl
3. C++

Ah, favorite programming language—time for a flame war. A bit of a shake-up
this year: after being knocked out of first place last year, C reclaims it this year
and C++ drops to third. The P language in the top three is Perl, while PHP slips
to fourth place, closely followed by Python. The voting was close this year, too;
only 59 votes separated C from C++.

Favorite Instant Messaging Client

1. Gaim
2. Kopete
3. Jabber

Receiving almost 800 more votes than Kopete, Gaim is the clear winner of the
favorite instant-messaging client award. Kopete and Jabber switched places
since last year, but only seven votes separated them. Quite a few voters wrote
that they hate IM. Come on, guys, who has time these days to wait for e-mail?

Favorite Graphics Program

1. The GIMP
2. ImageMagick
3. gqview

It's okay if you want to skip this category; nothing really changes here. The
GIMP won almost 70% of the votes...again. Inkscape is the most popular write-
in vote this year. A number of you continue to use WINE to access Photoshop
and other non-Linux programs.

Favorite Linux Game

1. Frozen Bubble

2. Tux Racer

3. Quake 3

We find it quite interesting that every year one of the categories that receives
the most votes is Favorite Linux Game. According to some, games on Linux pale
in comparison to what's available for other platforms. But that doesn't stop our
voters from wasting hours at the keyboard, does it? Frozen Bubble retains its
addictive powers for another year and claims first prize.

Favorite Web Browser

1. Mozilla
2. Konqueror

3. Opera

The top two spots are the same this year as they were last year, with Mozilla
claiming 50% of all votes. Opera broke the top three this year, sending Galeon
down to fifth place. On the write-in side, it's all about the Firefox. To those of
you complaining that Firefox is not Mozilla or another Gecko-based browser,
your pleas have been duly noted.

Resources for this article: www.linuxjournal.com/article/7757.

Heather Mead is senior editor of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.linuxjournal.com/article/7757
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/127/toc127.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 MyHDL: a Python-Based Hardware Description Language

Jan Decaluwe

Issue #127, November 2004

Hardware design finally enters the 21st century. This new tool brings the
readable code of Python and the test discipline of extreme programming to
hardware projects.

Digital hardware design typically is done using a specialized language, called a
hardware description language (HDL). This approach is based on the idea that
hardware design has unique requirements. The mainstream HDLs are Verilog
and VHDL.

The MyHDL Project challenges conventional wisdom by making it possible to
use Python, a high-level, general-purpose language, for hardware design. This
approach lets hardware designers benefit from a well-designed, widely used
language and the open-source model behind it.

 Concepts

An HDL contains certain concepts that reflect the nature of hardware. The most
characteristic concept is a model for massive concurrency. An HDL description
consists of a large amount of tiny threads that communicate closely with one
another. This design calls for an approach to threading that is as lightweight as
possible. HDL descriptions are executed on a dedicated runtime environment
called a simulator.

When designing MyHDL, I took a minimalistic approach, which is in line with the
Python spirit and a good idea in general. Therefore, an important part of
MyHDL is a usage model for Python. The other part consists of a Python
package, called myhdl, that contains objects that implement HDL concepts. The
following Python code imports some MyHDL objects that we are going to use
shortly:

from myhdl import Signal, Simulation, delay, now

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

MyHDL models concurrency with generator functions, recently introduced in
Python (see the on-line Resources). They are similar to classic functions, except
they have a nonfatal return capability. When a generator function is called, it
returns a generator, which is the object of interest. Generators are resumable
and keep state between invocations, making them usable as ultra-lightweight
threads.

The following example is a generator function that models a clock generator:

 def clkgen(clk):
 """ Clock generator.
 clk -- clock signal
 """
 while 1:
 yield delay(10)
 clk.next = not clk

This function looks similar to a classic function in Python. Notice that the
functional code starts with a while 1 loop; this is the idiomatic way to keep a
generator alive forever. The essential difference between a classic and a
generator function is the yield statement. It behaves similarly to a return
statement, except the generator remains alive after yielding and can be
resumed from that point. Moreover, the yield statement returns a delay object.
In MyHDL, this mechanism is used to pass control information to the simulator.
In this case, the simulator is informed that it should resume the generator after
a delay of ten time units.

The parameter clk represents a clock signal. In MyHDL, signals are used for
communication among generators. The concept of a signal is inherited from
VHDL. A signal is an object with two values: a read-only current value and a next
value that can be modified by assigning it to the .next attribute. In the example,
the clock signal is toggled by setting its next value to the inverse of its current
value.

To simulate the clock generator, we first create a clock signal:

clk = Signal(bool(0))

The signal clk has a Boolean zero as its initial value. Now, we can create a clock
generator by calling the generator function:

clkgen_inst = clkgen(clk)

To have a minimally useful simulation, let's create another generator that
monitors and prints the changes of the clock signal over time:

def monitor():
 print "time: clk"
 while 1:

 print "%4d: %s" % (now(), int(clk))
 yield clk

The yield clk statement shows how a generator can wait on a change of the
signal value.

In MyHDL, a simulator is created with the Simulation object constructor, which
takes an arbitrary number of generators as parameters:

sim = Simulation(clkGen_inst, monitor())

To run the simulator, we call its run method:

sim.run(50)

This runs the simulation for 50 time units. The output is as follows:

$ python clkgen.py
time: clk
 0: 0
 10: 1
 20: 0
 30: 1
 40: 0
 50: 1

At this point, we can describe how the simulator works. The simulation
algorithm is inspired by VHDL, an HDL slightly less popular than Verilog but a
better example to follow. The simulator coordinates the parallel execution of all
generators using an event-driven algorithm. The object that a generator yields
specifies the event for which it wants to wait before its next invocation.

Suppose that at a given simulation step, some generators become active
because the event they were waiting on has occurred. In a first simulation
phase, all active generators are run, using current signal values and assigning
to next values. In a second phase, the current signal values are updated with
the next values. As a result of signal value changes, some generators become
active again, and the simulation cycle repeats. This mechanism guarantees
determinism, because the order in which the active generators are run is
irrelevant for the behavior of the model.

 A Real Design Example

Having introduced the concepts, we now are ready to tackle a real design
example with MyHDL. I have chosen a serial peripheral interface (SPI) slave
hardware module. SPI is a popular synchronous serial control interface
originally designed by Motorola.

A single SPI master can control multiple slaves. There are three common I/O
ports: mosi, the master-out, slave-in serial line; miso, the master-in, slave-out
serial line; and sclk, the serial clock driven by the master. In addition, a slave
select line, ss_n, exists for each slave. SPI communication always occurs in the
two directions simultaneously. In general, the active clock edge that triggers
data changes is configurable. In this example, we use the rising edge.

The MyHDL code of the SPI slave is shown in Listing 1. A classic Python function
called SPISlave is used to model a hardware module. The function has all
interface signals as its parameters, and it returns two generators. This code
illustrates how hierarchy is modeled in MyHDL: a higher-level function calls
lower-level functions and includes the returned generators in its own return
value.

Listing 1. MyHDL Model of an SPI Slave

from myhdl import Signal, posedge, negedge, intbv

ACTIVE_n, INACTIVE_n = bool(0), bool(1)
IDLE, TRANSFER = bool(0), bool(1)

def toggle(sig):
 sig.next = not sig

def SPISlave(miso, mosi, sclk, ss_n,
 txdata, txrdy, rxdata, rxrdy,
 rst_n, n=8):
 """ SPI Slave model.

 miso -- master in, slave out serial output
 mosi -- master out, slave in serial input
 sclk -- shift clock input
 ss_n -- active low slave select input
 txdata -- n-bit input with data to be transmitted
 txrdy -- toggles when new txdata can be accepted
 rxdata -- n-bit output with data received
 rxrdy -- toggles when new rxdata is available
 rst_n -- active low reset input
 n -- data width parameter

 """

 cnt = Signal(intbv(0, min=0, max=n))

 def RX():
 sreg = intbv(0)[n:]
 while 1:
 yield negedge(sclk)
 if ss_n == ACTIVE_n:
 sreg[n:1] = sreg[n-1:]
 sreg[0] = mosi
 if cnt == n-1:
 rxdata.next = sreg
 toggle(rxrdy)

 def TX():
 sreg = intbv(0)[n:]
 state = IDLE
 while 1:
 yield posedge(sclk), negedge(rst_n)
 if rst_n == ACTIVE_n:
 state = IDLE
 cnt.next = 0
 else:
 if state == IDLE:

 if ss_n == ACTIVE_n:
 sreg[:] = txdata
 toggle(txrdy)
 state = TRANSFER
 cnt.next = 0
 else: # TRANSFER
 sreg[n:1] = sreg[n-1:]
 if cnt == n-2:
 state = IDLE
 cnt.next = (cnt + 1) % n
 miso.next = sreg[n-1]

 return RX(), TX()

The module interface contains some additional signals and parameters. txdata
is the input data word to be transmitted, and txrdy toggles when a new word
can be accepted. Similarly, rxdata contains the received data word, and rxrdy
toggles when a new word has been received. Finally, there is a reset input,
rst_n, and a parameter n that defines the data word width.

Inside the SPI slave module, we create a signal, cnt, to keep track of the serial
cycle number. It uses an intbv object as its initial value. intbv is a hardware-
oriented class that works like an integer with bit-level facilities. Python's
indexing and slicing interface can be used to access individual bits and slices.
Also, an intbv object can have a minimum and a maximum value.

The RX generator function describes the receive behavior. Whenever the slave
select line ss_n is active low, the mosi input is shifted to the shift register sreg.
The yield negedge(sclk) statement indicates that the action occurs on the falling
clock edge. In the last serial cycle, the shift register is transferred to the rxdata
output and rxrdy toggles.

The TX generator function is slightly more complicated, because it requires a
small state machine to control the protocol. The yield statement specifies two
events in this case, meaning that the generator is resumed on the event that
occurs first. When the reset input is active low, cnt and state are reset. In the
other case, the action depends on the state. In the IDLE state, we wait until the
select line goes active low before accepting the data word for transmission and
going to the TRANSFER state. In the TRANSFER state, the shift register is shifted
out serially. The state machine maintains the proper serial cycle count and
returns to the IDLE state on the last shift.

 Verification

The SPI slave module was modeled at a level that stays close to an actual
implementation. This is a good way to introduce MyHDL's concepts. However,
using MyHDL for this purpose doesn't provide a lot of advantages over
traditional HDLs. Instead, MyHDL's real value is it makes the whole of Python
available to hardware designers. Python's expressive power, flexibility and
extensive library offer possibilities beyond the scope of traditional HDLs.

One area in which Python-like features are desirable is verification. As with
software, in hardware design, verification is the hard part. It generally is
acknowledged that traditional HDLs are not up to the task. Consequently, yet
another language type has emerged, the hardware verification language (HVL).
Once again, MyHDL relies on Python to challenge this trend.

To set up a hardware verification environment, we first create a test bench. This
is a hardware module that instantiates the design under test (DUT), together
with data generators and checkers. Listing 2 shows a test bench for the SPI
slave module. It instantiates the SPI slave module together with an SPI tester
module that controls all interface pins. To be able to use multiple SPI tester
modules that verify various aspects of the design, the SPI tester module is a
parameter of the test bench.

Listing 2. A Test Bench for the SPI Slave Module

import unittest
from random import randrange

from myhdl import Signal, intbv, traceSignals

from SPISlave import SPISlave, ACTIVE_n, INACTIVE_n

def TestBench(SPITester, n):

 miso = Signal(bool(0))
 mosi = Signal(bool(0))
 sclk = Signal(bool(0))
 ss_n = Signal(INACTIVE_n)
 txrdy = Signal(bool(0))
 rxrdy = Signal(bool(0))
 rst_n = Signal(INACTIVE_n)
 txdata = Signal(intbv(0)[n:])
 rxdata = Signal(intbv(0)[n:])

 SPISlave_inst = traceSignals(SPISlave,
 miso, mosi, sclk, ss_n,
 txdata, txrdy, rxdata, rxrdy, rst_n, n=n)

 SPITester_inst = SPITester(
 miso, mosi, sclk, ss_n,
 txdata, txrdy, rxdata, rxrdy, rst_n, n=n)

 return SPISlave_inst, SPITester_inst

For the tests themselves, we use a unit testing framework. Unit testing is a
cornerstone of extreme programming (XP), a modern software development
methodology that is an intriguing mixture of common sense and radically new
ideas. The genuine XP approach is to develop the test first, before the
implementation. XP is a useful methodology, but its lessons virtually are
ignored by the hardware design community. With MyHDL, Python's unit testing
framework, unittest, can be used for test-driven hardware development.

Listing 3 shows test code for the SPI slave module. Tests are defined in a
subclass of the unittest.TestCase class. Each method name with the prefix test
corresponds to an actual test, but other methods can be written to support the

tests. A typical test suite consists of multiple tests and test cases, but we
describe a single test to demonstrate the idea.

Listing 3. A Test Case for Receiving Data via SPI

import unittest
from random import randrange

from myhdl import Simulation, join, delay, \
 intbv, downrange

from SPISlave import SPISlave, ACTIVE_n, INACTIVE_n
from SPISlaveTestBench import TestBench

n = 8
NR_TESTS = 100

class TestSPISlave(unittest.TestCase):

 def RXTester(self, miso, mosi, sclk, ss_n,
 txdata, txrdy, rxdata, rxrdy,
 rst_n, n):

 def stimulus(data):
 yield delay(50)
 ss_n.next = ACTIVE_n
 yield delay(10)
 for i in downrange(n):
 sclk.next = 1
 mosi.next = data[i]
 yield delay(10)
 sclk.next = 0
 yield delay(10)
 ss_n.next = INACTIVE_n

 def check(data):
 yield rxrdy
 self.assertEqual(rxdata, data)

 for i in range(NR_TESTS):
 data = intbv(randrange(2**n))
 yield join(stimulus(data), check(data))

 def testRX(self):
 """ Test RX path of SPI Slave """
 sim = Simulation(TestBench(self.RXTester, n))
 sim.run(quiet=1)

if __name__ == '__main__':
 unittest.main()

The RXTester method is a generator function designed for a basic test of the SPI
slave receive path. It contains a local generator function, stimulus, that
transmits a data word on the SPI bus as a master. Another local generator
function, check, checks whether the data word is received correctly by the
slave. The complete test consists of a number of random data word transfers.
For each data word, we create a stimulus and a check generator. To wait for
their completion, MyHDL allows us to put them in a yield statement. For proper
synchronization, we want to continue only when both generators have
completed. This functionality is accomplished by the join function.

When we run the test program, the output indicates which tests fail at what
point. When everything works, the output from our small example is as follows:

$ python test_SPISlave.py -v
Test RX path of SPI Slave ... ok
--
Ran 1 test in 0.559s

 Waveform Viewing

MyHDL supports waveform viewing, a popular way to visualize hardware
behavior. In Listing 2, the instantiation of the SPI slave module is wrapped in a
call to the function traceSignals. As a side effect, signal changes are dumped to
a file during simulation, in a standard format. Figure 1 shows a sample of the
waveforms rendered by gtkwave, an open-source waveform viewer.

Figure 1. Using gtkwave, you can visualize all the signals as the test suite runs.

 Links to Other HDLs

MyHDL is a practical solution with links to other HDLs. MyHDL supports co-
simulation with other HDL simulators that have an interface to the operating
system. A bridge must be implemented for each simulator. This has been done
for the open-source Verilog simulators Icarus and cver.

In addition, an implementation-oriented subset of MyHDL code can be
converted automatically into Verilog. This is done with a function called
toVerilog, which is used in the same way as the traceSignals function described
earlier. The resulting code can be used in a standard design flow, for example,
to synthesize it automatically into an implementation.

https://secure2.linuxjournal.com/ljarchive/LJ/127/7542f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7542f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7542f1.large.jpg

 Epilogue

Tim Peters, a famous Python guru, explains his love for Python with the
paradoxical statement, “Python code is easy to throw away.” In the same spirit,
MyHDL aims to be the hardware design tool of choice to experiment with new
ideas.

Resources for this article: /article/7749.

Jan Decaluwe has been an ASIC design engineer and entrepreneur for 18 years.
Currently, he is an electronic design and automation consultant. He can be
reached at jan@jandecaluwe.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/127/7749.html
mailto:jan@jandecaluwe.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/127/toc127.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Revision Control with Arch: Introduction to Arch

Nick Moffitt

Issue #127, November 2004

Whether you're moving up from CVS or just getting serious about a revision
control system, here's a powerful tool that will keep records of changes and
keep your projects under control.

Arch quickly is becoming one of the most powerful tools in the free software
developer's collection. This is the first in a series of three articles that teaches
basic use of Arch for distributed development, to manage shared archives and
script automated systems around Arch projects.

This article shows you how to get code from a public Arch archive, contribute
changesets upstream and make a local branch of a project for disconnected
use. In addition, it provides techniques to improve performance of both local
and remote archives.

 History of Revision Control

Revision control is the business of change management within a project. The
ability to examine work done on a project, compare development paths and
replicate and undo changes is a fundamental part of free software
development. With so many potential contributors and such rapid release of
changes, the tools developers use to manipulate these changes have had to
evolve quickly.

Early revision control was handled with tape backups. Old versions of a project
would be dragged out of backup archives and compared line by line with the
new copy. The process of restoring a backup from tape is not quick, so this is
not an efficient method by any means.

To work around this lag, many developers kept old copies of files around for
comparison, and this was soon integrated into early development tools. File-
based revision control, such as that used by the Emacs editor, uses numbered

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

backup files so you can compare foo.c~7~ with foo.c~8~ to see what changed.
Versioned backup files even were integrated into the filesystem on some early
proprietary operating systems.

For nearly two decades, the preferred format for third-party contributions to
free software projects has been a patch file, sometimes called a diff. Given two
files, the diff program generates a listing that highlights the differences
between them. To apply the changes specified in the diff output, a user need
only run it through the patch program.

In the 1990s, the Concurrent Versions System (CVS) became the default for
managing the changes of a core group of developers. CVS stores a list of
patches along with attribution information and a changelog. A primitive system
of branching and merging allows users to experiment with various lines of
development and then fold successful efforts back into the main project.

CVS has its limitations, and they are becoming a burden for many projects.
First, it does not store any metadata changes, such as the permissions of a file
or the renaming of a file. In addition, check-ins are not grouped together in a
set, making it difficult to examine a change that spanned multiple files and
directories. Finally, nearly all operations on a remote CVS repository require
that a new connection be opened to the server, making it difficult for
disconnected use.

Efforts such as the Subversion Project have come a long way toward fixing the
flaws found in CVS. Subversion is effectively a CVS++, and it supports file
metadata change logging and atomic check-ins. What it still requires is a
centralized server on the network that all clients connect to for revision
management operations.

 Distributed Revision Control Systems

A new generation of revision control systems has sprung up in the past few
years, all operating on a distributed model. Distributed revision control systems
do away with a single centralized repository in favor of a peer-to-peer
architecture. Each developer keeps a repository, and the tools allow easy
manipulation of changes between systems over the network.

Projects such as Monotone, DARCS and Arch are finding popularity in a world
where free software development happens outside of well-connected
universities, and laptops are much more common.

One of the most promising distributed systems today is GNU Arch. Arch
handles disconnected use by encouraging users to create archives on their
local machines, and it provides powerful tools for manipulating projects

between archives. Arch lacks any sort of dedicated server process and uses a
portable subset of filesystem operations to manipulate the archive. Archives
are simply directories that can be made available over the network using your
preferred remote filesystem protocol. In addition, Arch supports archive access
over HTTP, FTP and SFTP.

One advantage to not having a dedicated dæmon is that no new code is given
privilege on your server machine. Thus, your security concerns are with your
SSH dæmon or Web server, which most system administrators already are
keeping tabs on.

Another advantage is that for most tasks no root privilege is needed to make
use of Arch. Developers can begin using it on their own machines and publish
archives without even installing Arch on the Web server machine. This affects
the pattern of adoption as well. Using CVS or Subversion is a top-down decision
made for an entire project team, although Arch can be adopted by one or two
developers at a time until everyone in the group is up to speed.

 Obtaining tla

Arch was originally a set of shell scripts and wrappers around Tom Lord's
hackerlabs libraries. The name of the program in those days was larch, and it
was more than a little clumsy to use. The client now has been entirely rewritten
in C and is called tla, which stands for Tom Lord's Arch. The interface is still not
perfect, but it is good enough for regular use by a skilled developer. Packages
of tla are available for most GNU/Linux distributions (see the on-line
Resources).

 Checking Out a Read-Only Project

Once you have tla installed, it's good to test it by checking out some code. Arch
stores your data in a directory known as an archive. Within the archive, data is
organized into nested categories: projects (the name of the work as a whole),
branches (a particular thread of development or other descriptive term) and
versions (a simple numerical indicator you can use to indicate how far a specific
branch has progressed).

The first step to getting some code is to register a public archive so that Arch
associates a name with the archive location:

$ tla register-archive http://www.lnx-bbc.org/arch

You should now see the lnx-bbc-devel@zork.net--gar archive listed when you
run tla archives. If you're curious about what projects are stored in there,
you can use the tla abrowse command to get a full list:

$ tla abrowse lnx-bbc-devel@zork.net--gar
lnx-bbc-devel@zork.net--gar
 lnx-bbc
 lnx-bbc--research
 lnx-bbc--research--0.0
 base-0 .. patch-10

 lnx-bbc--stable
 lnx-bbc--stable--2.1
 base-0 .. patch-29

 scripts
 scripts--gargoyle-bin
 scripts--gargoyle-bin--1.0
 base-0 .. patch-7

This listing tells us that the lnx-bbc-devel@zork.net--gar archive has two
projects, lnx-bbc and scripts. The lnx-bbc project has two branches, research
and stable. The lnx-bbc--research branch has only one version (0.0) and that
version has had ten changes recorded in the archive. The lnx-bbc--stable
branch has only one version (2.1) with 29 changesets.

Because you now have the LNX-BBC public archive registered in your local
listing, you can check out a copy of the LNX-BBC stable branch:

$ tla get \
lnx-bbc-devel@zork.net--gar/lnx-bbc--stable lnxbbc

Once it finishes downloading and applying patchsets, you should have a
directory named lnxbbc/ that is full of files. To simulate a change in the code,
cd into lnxbbc/ and edit robots.txt to add a new comment somewhere.

 Contributing Changes

Now that you have made a change, running tla what-changed should print
M robots.txt to indicate that robots.txt has been modified. To get the
details of the change, you can run tla what-changed --diffs, which
should print out a diff file ready to be sent back to the project's development
group:

--- orig/robots.txt
+++ mod/robots.txt
@@ -1,3 +1,5 @@
+# Welcome, robots!
+
 User-agent: *
 Disallow: /garchive/
 Disallow: /cgi-bin/

The drawback to this is that the diff does not indicate metadata changes.
Moved files will not be listed, and new files will not be created when another
developer runs this diff through patch. In order to submit a more complicated
change to the project maintainers, you must generate a changeset.

In Arch, a changeset is represented as a directory tree full of bookkeeping files,
patches, new files and removed files. The best contribution technique is to
create a changeset directory and then tar it up for delivery:

$ tla changes -o ,,new-robot-comment
$ tar czvf my-changes.tar.gz ,,new-robot-comment/

Arch ignores files beginning with two commas, an equal sign and a few other
special characters. By using a ,, at the start of our changeset directory name,
we avoid the annoyance of Arch complaining that our new directory doesn't
exist in the archive. It is probably good practice to use your e-mail address or
some other identifier in the tarball filename and changeset directory name.

 Keeping Up to Date

Now and then you'll want to download the latest changes to the project. This is
as simple as running tla update from inside the checked-out copy.

Arch first runs tla undo to set aside your local changes before applying new
changesets. Once all the patches have been applied, it runs tla redo to re-
apply your local changes.

All of the tla commands introduced above require a functioning network
connection to the lnx-bbc.org system that hosts the archive. For disconnected
use, you need to create a local archive and then make a branch within it.

 Setting Up an Archive

Before you can begin working in a read-write archive, you must identify
yourself to tla:

$ tla my-id "J. Random Hacker <jrh@zork.net>"

Once you have entered your e-mail address, it is time to create an archive for
your projects. Arch lets you make many archives, but you can keep as many
projects and branches as you like in the same archive.

Archive names have two parts, separated by two hyphens: the first is your e-
mail address, and the second is some identifier. Many people like to use the
four-digit year as the identifier and roll over to a new archive each year:

$ tla make-archive -l jrh@zork.net--2004 ~/ARCHIVE
$ tla my-default-archive jrh@zork.net--2004

The my-default-archive command makes certain operations on the local
archive easier to type.

 Setting Up a Project Branch

Arch encourages developers to fork and merge projects using branches.
Branches are the primary mechanism for moving code from one archive to
another, even over a network. You can use a branch for a complete code fork to
pursue an entirely new line of development, or you can use a branch to cache a
copy of a project on your laptop so that you can work for a while in an
environment that lacks network access.

Published branches are also the primary development communications
mechanism for developers who use Arch. Instead of mailing large changeset
tarballs or patch files around, a contributor most likely would set up a branch
to make local changes and then invite the upstream developers to merge those
changes back into the main project. This is where the decentralized and
democratic nature of Arch's design shines. Any developer can join the
development effort without needing special privilege in the core team's archive.

Before you can branch the lnx-bbc project, you have to set up a space for the
project in your archive. The format for a project identifier is similar to that of
the archive name: the category (or project name), two dashes, the branch
name, two dashes and the version number. It is most likely Tom Lord's
experience as a LISP hacker that informed his decision to use these dashes:

$ tla archive-setup lnx-bbc--robot-branch--0.0

This creates a category called lnx-bbc, a branch called robot-branch and a
version called 0.0. You did not need to specify jrh@zork.net--2004/ in front of
the project name because that is your default archive.

 Tagging Off the Branch

Finally, it is time to tag off the branch from the remote archive. This means the
robot-branch begins as a tag pointing to a particular revision of a project in the
lnx-bbc-devel@zork.net--gar archive, and all local changes start from that point:

$ tla tag \
 lnx-bbc-devel@zork.net--gar/lnx-bbc--stable--2.1 \
 lnx-bbc--robot-branch--0.0

At this point, running tla abrowse should show your default archive as
follows:

jrh@zork.net--2004
 lnx-bbc
 lnx-bbc--robot-branch
 lnx-bbc--robot-branch--0.0
 base-0

 Working with Your New Branch

You are now ready to check out a copy of your new branch:

$ tla get lnx-bbc--robot-branch robot-branch

At this point, you can go into the robot-branch directory and make some
changes:

$ chmod 444 index.txt
$ tla mv faq.txt robofaq.txt
$ echo "ROBOT TIME" > robot-time
$ tla add robot-time
$ tla rm ports.txt

The tla mv command renames a file in such a way that Arch keeps track of
the change. It is important to use this command in place of the standard mv.
The tla add command prepares a new file to be inserted into the archive,
and tla rm schedules removal of a file.

All of these changes can be checked in to your local branch now:

$ tla commit

Your preferred text editor (as specified in the $EDITOR environment variable)
will be started up with a template for your check-in log. Once you have filled
out the log entry, saving and exiting finalizes the commit.

Now running tla abrowse shows that you have two revisions of the robot
branch in the archive, base-0 and patch-1:

jrh@zork.net--2004
 lnx-bbc
 lnx-bbc--robot-branch
 lnx-bbc--robot-branch--0.0
 base-0 .. patch-1

 Merging Projects from Two Different Archives

Of course, while you work on your branch, development may have continued
on the original archive. Running tla update fetches changes only from your
local branch and not the original project. To fold in changes from upstream,
you need to star-merge:

$ tla star-merge \
lnx-bbc-devel@zork.net--gar/lnx-bbc--stable--2.1

In the event of conflicts (situations where both your branch and the upstream
project have changes to the same lines of code), Arch uses the standard patch
method of creating .orig and .rej files for each file that has conflicts. It is a good
idea to use the find utility to seek out any rejects before committing your star-
merge.

 Speeding Up Archive Operations

You may have noticed that revisions are named either base-0 or patch-#, where
is the number of patches to base-0 that must be applied. Arch uses a log-
structured archive format, so that archive operations only ever add information
to a project. This means that for big projects with many revisions, it can take a
long time for certain tasks.

To speed up operations, you can make a snapshot of a given revision. Arch
snapshots are simply a compressed tarball of a checked-out revision. When a
checkout or other operation is performed, Arch looks for the highest-numbered
snapshot and applies any necessary patches from there:

$ tla cacherev

Once this is finished, you can run tla cachedrevs to see what revisions
have snapshots within your archive:

lnx-bbc--robot-branch--0.0--base-0
lnx-bbc--robot-branch--0.0--patch-1

 Libraries

Because you do not always have access to create snapshots in an archive, it can
be useful to make a local cache to speed up file operations. Arch provides a
second kind of cache, called a library, that stores copies of checked-out files
from various revisions. This is especially helpful for remote archives, because it
means you do not even need to download the base snapshot revision before
applying changesets:

$ mkdir ~/LIBRARY
$ tla my-revision-library ~/LIBRARY
$ tla library-config --greedy ~/LIBRARY
$ tla library-add \
 lnx-bbc-devel@zork.net--gar/lnx-bbc--stable--2.1

This library is not small, with the example above comprising over 78MB as of
June 2004. The advantage over a slow link, however, is well worth the trouble.
In addition, laptops often have slow ATA hard drives, and involved archive
operations can be a drag as the drivers use up plenty of CPU cycles. A greedy
(auto-updating) Arch library can make your revision control operations quicker
and more responsive, even for local archives.

 More to Come

In the next article in this series, you'll learn how to make publicly available
mirrors so that upstream developers can star-merge back from your branches.
In addition, you'll learn how to cherry-pick changesets from a busy branch and
how to use GnuPG to sign your changesets cryptographically for security
purposes.

The third and final installment of this series will describe centralized
development techniques with Arch. You'll learn how to manage a shared access
archive using OpenSSH's SFTP protocol and how to write scripts to perform
automated tasks on your archives.

Resources for this article: /article/7752.

Nick Moffitt is a Linux professional living in the San Francisco Bay Area. He is
the build engineer for the LNX-BBC Bootable Business Card distribution of
GNU/Linux and the author of the GAR build system. When not hacking, he
studies the history of urban public transportation.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/127/7752.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/127/toc127.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Linux and RTAI for Building Automation

Andres Benitez

Vicente Gonzalez

Issue #127, November 2004

This easy-to-deploy Web-based control system uses standard phone wiring and
can manage any device that supports an infrared remote control.

This article presents the design and development of a control system for
centralized operation of different air-conditioning equipment in a building by
using Linux and the real-time Linux application interface (RTAI). Each air
conditioner, distributed throughout the building, has it own infrared (IR) remote
controller. The goal is to replace them with a centralized computer-based
control system to operate the air conditioners, including turning them on or off
and setting the desired temperature and fan speed.

The idea for this project came from the need of a local university to have a
centralized and flexible way to operate its air conditioners at a cost within its
budget. Commercial software and hardware exists for the same purpose, but
normally they are too expensive and manufacturer-dependent.

This project's hardware solution consists of a central control computer, running
Linux, connected to an RS-485 microcontroller network. The microcontrollers
have the capability to send commands to the related air conditioner using
infrared signals to operate the nearby equipment.

The software design of the system includes two real-time tasks—a main control
task and the RS-485 network control task—as well as two non-real-time tasks—
a Web server and a database. The Web server is in charge of the user interface,
making it available from any browser in the university's computer network. The
PostgreSQL database is used as the main data repository.

The implementation is a low-cost solution with the flexibility to extend it as
necessary. Moreover, it is not manufacturer-dependent, and it works with any

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

air conditioner that supports an IR remote controller. Each air conditioner
works independently using its own temperature control system. To supervise
the operation of this equipment, each microcontroller in the network is
equipped with a temperature sensor to monitor the actual classroom
temperature and report it to the central computer.

 User Interface

The entire user interface is based on Web pages. The first page displays a
summary of the actual state of each air conditioner. This information includes
an identification string, the room in the building where it is located, the actual
room temperature and whether the equipment has a preprogrammed
operation sequence according to which it actually is operating. For each air
conditioner, this page has a link to the operation interface for the specific piece
of equipment. Before going to this page, the system asks for a user name and
password. At this level, it is possible to interact with the system directly
controlling the air conditioner or to create or change the actual program for
automatic operation (Figure 1).

Figure 1. From the operation interface, an authorized user can turn the air conditioner on, set
a new temperature or turn it off.

The most interesting part of the system is the programmed operation. For
example, every day the system can turn on the air conditioners automatically,
with a predefined temperature setting for each room, before classes begin.
Then, the system can turn off the air conditioners at a time in the evening when
the activities in the building or in a specific classroom end.

https://secure2.linuxjournal.com/ljarchive/LJ/127/7258f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7258f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7258f1.large.jpg

 Hardware Architecture

The hardware architecture is composed of a central control computer and
microcontrollers commanding the air-conditioning equipment. All the
microcontrollers are connected to an RS-485 two-wire network. The
microcontroller used in this application is the AT89C2051, an Intel 8051
derivative from ATMEL. It is encapsulated in a 20-pin DIP package and is
equipped with 128 bytes of data RAM, 2KB of ROM for code, one asynchronous
serial port and 14 independent digital I/O ports. Figure 2 shows the
microcontroller board and its parts.

Figure 2. The microcontroller board with the microcontroller removed.

The software in the microcontroller generates the IR signal using one digital
output port. The serial port connects the microcontroller to the RS-485
network. Each microcontroller board is equipped with a temperature sensor,
the DS1620 from Dallas Semiconductor. The microcontroller communicates
with the temperature sensor using a digital three-wire synchronous serial
interface. The microcontroller has no hardware support for synchronous serial
ports; therefore, it is implemented in software using normal I/O ports.

The RS-485 network is used in this application because it is easy to deploy,
cheap to implement and easily can connect a useful number of nodes. Only
one pair of Category 3 telephony grade cable connects the nodes. Due to the

https://secure2.linuxjournal.com/ljarchive/LJ/127/7258f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7258f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7258f2.large.jpg

hardware driver limitation, the maximum number of allowed nodes is 32, but
this number easily can be extended using network repeaters. The maximum
cable length between the control computer and the first repeater or between
repeaters is 1,200 meters.

A master-slave protocol controls access to the physical cable. The computer
running Linux is the master, which polls each node with a predefined rate. On
every polling the master can send commands to the node; the polled node
answers by sending data to the master or by sending an empty packet to say
that the node is active. A drawback of using this access-control protocol occurs
if the master goes down—the entire network goes down too.

Considering the limited resources of the microcontrollers, the 9th-bit protocol
is used to determine whether the packet sent through the network is for this
controller. Each byte transmitted through the network has an additional bit.
The packet destination address is the only one transmitted with this additional
bit set to high. The microcontroller's UART (universal asynchronous receiver
and transmitter) is programmed by default to generate an interrupt only if the
9th bit of the received byte is high. The interrupt service routine then compares
the received byte with the node address. If there is a match, the routine
programs the UART to receive all the bytes regardless of the 9th-bit state, until
the end of the packet. If the destination address does not match this node
address, the interrupt service routine returns.

The central control computer UART, which is PC hardware, does not directly
support the 9th-bit protocol. To overcome this limitation, the driver simulates it
by using the parity bit. Before transmitting a byte, the driver configures the
parity to generate a one in the 9th bit of the address byte and a zero in the 9th
bit of the other bytes.

Figure 3 shows a diagram of the tasks in the system and the communication
links between them.

Figure 3. Communication among the Tasks in the System

https://secure2.linuxjournal.com/ljarchive/LJ/127/7258f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7258f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7258f3.large.jpg

 Real-Time Tasks

The main control task, the network access-control task and the software driver
for the physical layer of the RS-485 network are the tasks that run in the real-
time executive. An RS-485 driver was developed for RTAI. This driver is similar
to any other serial driver, except for the 9th-bit protocol used in this
application, as described above.

The other real-time task is the network access-control task, which is in charge of
periodically sending packets to each network node. This packet can be a
command to generate an IR signal, a poll to see if the node is active or a
command to the microcontroller to transmit the actual room temperature. The
node answers with an acknowledgement to the first two types of packets and
with the actual room temperature to the last one. The information about the
actual state of every node is available to the main control task, which in turn
informs the user interface if a node fails.

The main control task, using information retrieved from the database, operates
the air-conditioning equipment in the building, as programmed. This task also
can receive instructions from the user interface that overrides the programmed
configuration, using two RT-FIFOs. RT-FIFOs are an interprocess communication
routine for communication between real-time tasks and normal Linux tasks. To
communicate with the PostgreSQL database, a Linux dæmon was developed.
This dæmon communicates with the main control task using two more RT-
FIFOs. An additional important function of this dæmon is to send to the main
control task the system date and time; no support for reading it exists in RTAI.

The developed system sends commands to the air conditioners, eliminating the
need for local remote controllers. We do not interfere with the air-conditioner
temperature control system, nor do we touch any internal circuitry. Each air
conditioner has its own temperature control system built-in, and the
temperature sensor in each microcontroller supervises that the equipment is
working fine. Figure 4 shows the microcontroller board installed.

https://secure2.linuxjournal.com/ljarchive/LJ/127/7258f4.large.jpg

Figure 4. The complete microcontroller board as installed.

 Linux Tasks

The Linux tasks are in charge of presenting the user interface through a Web
server and running the PostgreSQL database engine, which is the main data
repository. As described above, another Linux side task is a dæmon used for
the RTAI main control task to access the system date/time and the database.

The user interface is simple. The first page presents information about the
actual state of each air conditioner. Every type of user can access this page. In
order to change the program or send commands to a particular air conditioner,
the system asks for a user name and password. PHP is used to generate the
Web pages dynamically to present the information retrieved from the
database.

In the PostgreSQL database, the system stores general information about the
air conditioners, such as BTU, location, brand and microcontroller network
node address; the programmed operations; and the IR commands needed to
operate each air conditioner.

 IRC Command Interface

An important part of the system is the module that reads the air-conditioner
remote controller signals and stores the information, associated with the
corresponding equipment, in the database to reproduce it using the networked
microcontrollers. This module is used only when adding a type of air

https://secure2.linuxjournal.com/ljarchive/LJ/127/7258f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7258f4.large.jpg

conditioner that has a different brand and/or different remote controller
commands.

Two tasks are part of this module: the first is a real-time task that reads the IR
signal. The LIRC Project as well as the Ripoll and Acosta paper in the on-line
Resources, present detailed information about IR remote controllers and
sample implementations using normal Linux and RTLinux, another real-time
executive for Linux. The other task for this module is the user interface that
runs on Linux. The two tasks communicate using an RT-FIFO.

Due to the small amount of RAM available in the microcontroller and the long
IR signal duration, an important function of this software is to help the user
obtain repetitive patterns within the different IR remote controller signals
associated with each button or combination of buttons. These patterns are
coded in the firmware of the microcontroller and are used to reconstruct the
command to control the equipment. For example, if there are ten different
patterns, the information sent to the appropriate microcontroller in the
network is something like: repeat pattern one ten times, then pattern two three
times and so on, until the complete command is reconstructed. This technique
has the advantage of using fewer resources for signal reconstruction. The
disadvantage is the software of the microcontroller needs to be changed to
introduce the patterns of the newly added equipment whenever a new air
conditioner is introduced.

 Costs

Currently, nine air conditioners are controlled using the system described here;
all of them are located in the same building. Another 15 will be added soon.
The hardware cost of each microcontroller node is $60 US, and the central
control computer costs about $500 US. The other costs are the deployment of
the RS-485 network and, of course, the development and implementation of
the system.

 Conclusion

The implemented system fulfills the specifications of the actual user. Because
of this project's success, every new air conditioner acquired by the university
must be compatible with the system. The only condition that must be met to
comply with the system is every new air conditioner must have an IR remote
controller.

Thanks to RTAI, the system main control task is independent of the user
interface tasks running in Linux. Even in the improbable situation that Linux
goes down, the system would continue on with the programmed operations.

In the future, the system may be extended easily to control, for example, the
building lights, alarms, access control to restricted areas and other systems.

Resources for this article: /article/7742.

Andres Benitez (adorego@conacyt.org.py) is working on his Electronic
Engineering degree from the Catholic University in Asuncion, Paraguay. The
work described in this article is the final project for that degree.

Vicente Gonzalez (vgonzale@uca.edu.py) is a civil engineer with an MSc degree
in Automation from the Polytechnic University of Madrid, Spain. Currently, he is
an assistant professor in the department of Electronic and Computer Science
Engineering, Catholic University in Asuncion.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/127/7742.html
mailto:adorego@conacyt.org.py
mailto:vgonzale@uca.edu.py
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/127/toc127.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

At the Forge

Aggregating with Atom

Reuven M. Lerner

Issue #127, November 2004

Want to give everyone a polite reminder when you have new content on your
Web site? Give your site the latest syndication standard and you'll have a new
tool to keep visitors coming back.

In the world of organized crime, a syndicate is a collection of gangsters who
work together. In the world of newspapers, a syndicate distributes information
to subscribers, allowing each publication to tailor the content of information it
receives. Comics, news stories and opinion columns often are distributed by
syndicates, providing greater exposure for the authors and more content for
the readers.

In the past few years, Web developers also have begun to use the term
syndicate, as both a verb and a noun. Fortunately for our safety, syndication on
the Web has more in common with newspapers than with the mob. But as with
organized crime, many people have been hurt in public disputes (albeit with
words, not guns), leading to a split and a fair amount of acrimony in the world
of Web syndication.

The result of this split is Atom, a new syndication format that has much in
common with RSS (rich site summary or RDF site summary, depending on the
version and whom you ask). I believe that Atom offers a number of advantages
over any version of RSS, and that the simplicity with which Atom feeds can be
created makes it an obvious choice over RSS. That said, the fact that most
Weblog products provide RSS feeds means that the two camps happily can
coexist for now. Understanding how both work also means your organization
can decide to adopt one or both standards, depending on your needs.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Some History

As we saw last month, RSS really is two different formats, or more precisely,
two different families of formats. RSS 0.9x and RSS 2.0 are from the same
family and demonstrate the evolution, over time, of syndication on the Web.
RSS 2.0 is maintained mainly by Dave Winer of Userland, scripting.com and
(most recently) Harvard University. Winer has given ownership of the standard
to Harvard but also has declared that version 2.0 will be the final one.
Nevertheless, the combination of RSS 0.9x and RSS 2.0 represents a
widespread, stable, well-understood and ambiguous protocol for syndicating
Web content.

A separate flavor of RSS, confusingly known as RSS 1.0, uses the resource
development framework (RDF) produced by the World Wide Web Consortium
(W3C). RDF is designed to make it possible for computers to understand a site's
contents, allowing it to make connections between sites, much as people
instinctively do all the time. RSS 1.0 produces a summary that is incompatible
with all other versions of RSS, using RDF to produce a standardized description
of the site's contents.

The fact that RSS 1.0 used the RSS name caused a great deal of friction and
animosity, with many people variously blaming Dave Winer, the vagueness of
the RSS specification and the proponents of Atom's predecessor. At the end of
the day, a number of prominent individuals—led by Tim Bray, Mark Pilgrim and
Sam Ruby—were backed by such companies as Six Degrees (which publishes
Movable Type software for Weblogs) to produce a specification, initially called
PIE and Echo, which attempts to address the shortcomings of RSS.

The development of Atom took some time, because it involved understanding
and defining exactly what syndication means on today's World Wide Web. RSS
no longer is used only for news sites, its original target, but also for Weblogs
and nontextual content. The developers decided to make internationalization a
top priority, meaning that it should be possible to produce a syndication feed in
any language. Another priority was the development of extensions—that is, it
should be possible to add new functionality to the Atom feed without having to
redefine the core Atom specification.

As of this writing (mid-August 2004), the Atom specification now exists in
version 0.3, along with a standard API for editing content over the network.
Atom has begun the process of becoming standardized by the IETF (the
Internet Engineering Task Force, which produces and publishes Internet
standards), meaning it is on its way to being a universally accepted standard,
much like TCP/IP, SMTP or HTTP. This undoubtedly will lead to even greater
interest in Atom from organizations that wait for the IETF's stamp of approval.

Atom is still in its initial stages, lacking public specifications for a number of
items, such as its extension mechanism. But its authors have, to date, produced
a standard whose complexity is fairly close to RSS 0.9x and 2.0, written in as
unambiguous a fashion as possible, which includes many members of the Web
syndication community and offers a vision of syndication that goes far beyond
the Web.

 Producing an Atom Feed

Although RSS was designed to summarize a news feed or Weblog, Atom was
created with a more general purpose in mind. For example, factory machines
could produce status reports in Atom, with an aggregator displaying those that
are malfunctioning. Libraries could produce Atom feeds of the latest additions
to their collections, with smart aggregators looking for books on certain
subjects. Fax machines could be replaced by fax modems, using Atom to
distribute fax images to appropriate groups of people.

You even could use Atom feeds to create a newspaper publishing system,
where reporters send their stories not as e-mail, but instead publish drafts on
an Atom feed. Each editor would aggregate Atom feeds from the reporters
under his or her control, moving them onto an outgoing Atom feed when the
editing was complete. The final feed would end up in the production
department, where the text would be laid out and made ready for actual
printing. The newspaper's content flow thus would be a flow of many Atom
feeds into a single, final feed representing the newspaper itself.

Producing an Atom feed is fairly simple, if you use Perl or another high-level
language for which an Atom library exists. Perl, for example, has the XML::Atom
module, available from CPAN (Comprehensive Perl Archive Network). I had a bit
of trouble installing XML::Atom on my machine running Fedora Core 2 and Perl
5.8.3, but I was able to work around it by ignoring the optional DateTime
module during the installation process. I would not recommend doing so in a
production environment.

Although XML::Atom is the overall package name, programs that create Atom
feeds actually use XML::Atom::Feed and XML::Atom::Entry. Here is a short Perl
program that produces a simple feed, based in part on the sample program in
the perldoc on-line documentation for XML::Atom::Feed:

#!/usr/bin/perl

use strict;
use diagnostics;
use warnings;

use XML::Atom::Feed;
use XML::Atom::Entry;

Create a new Atom feed

my $feed = XML::Atom::Feed->new;
$feed->title('My Weblog');

my $entry;
Create a first entry for the feed
$entry = XML::Atom::Entry->new;
$entry->title('First Post');
$entry->content('First Post Body');
$feed->add_entry($entry);

Create a second entry for the feed
$entry = XML::Atom::Entry->new;
$entry->title('Second Post');
$entry->content('Second Post Body');
$feed->add_entry($entry);

Now produce the XML output
my $atom_feed_xml = $feed->as_xml;

Display the XML output
print $atom_feed_xml, "\n";

The above program produces the following feed, which I have formatted with
extra whitespace for easier reading:

<?xml version="1.0"?>
<feed xmlns="http://purl.org/atom/ns#">
<title>
 My Weblog
</title>
<entry >
 <title>
 First Post
 </title>
 <content mode="xml">
 <default:div xmlns="http://www.w3.org/1999/xhtml">
 First Post Body
 </default:div>
 </content>
</entry>
<entry >
 <title>
 Second Post
 </title>
 <content mode="xml">
 <default:div xmlns="http://www.w3.org/1999/xhtml">
 Second Post Body
 </default:div>
 </content>
</entry>
</feed>

As you can see, we create a single XML::Atom::Feed object, containing one or
more instances of XML::Atom::Entry. Each entry object corresponds to a single
<entry> tag in the Atom feed, which in turn represents a single entry in our
Weblog or a single message from our factory floor.

The Atom specification indicates that the feed may contain a number of
attributes and sub-elements, including a language, a description of the Weblog
or site, copyright information and other general information about the
originating site. Each entry, in turn, has its own set of elements, such as a title,
an indication of when it was created and a summary. Each Atom element also

has a MIME type indicating what type of content it contains, much like HTTP
responses and e-mail attachments.

Of course, creating a feed, as in the above example, is necessary only if you are
writing a new Atom-powered application or if you are adding Atom capabilities
to a Weblog product. Most Weblog products now provide Atom feeds, either as
part of their standard distribution or through a plugin or other extension
mechanism. For example, an Atom feed plugin for the Blosxom Weblog product
makes it easy to add such a feed from a Weblog; install the plugin (by placing it
in the plugins directory), and anyone interested in receiving an Atom feed from
the Weblog in question will be able to do so.

It shouldn't come as a surprise that this is so easy to accomplish, given the fact
that Blosxom is written in Perl, that Perl provides excellent tools for working
with XML and that the plugin simply needs to summarize and rewrite content
from the most recent entries in the Weblog. Because Blosxom makes it so easy
for plugins to modify the main page (so as to advertise the Atom feed) and to
retrieve content (through the plugin API), it might be slightly easier to work with
Atom from that product. Given that most Weblog products are written in a
high-level language, such as Perl, Python or PHP, it should be easy to add an
Atom feed where none currently exists.

 Parsing an Atom Feed

To parse an Atom feed, either because we are writing an aggregator or because
we want to create an Atom-powered application, we have several options. The
easiest way is to continue to use XML::Atom::Feed to discover and retrieve
feeds, for example:

#!/usr/bin/perl

use strict;
use diagnostics;
use warnings;

use XML::Atom::Feed;

Get the Atom feeds for www.diveintomark.org
my @uris =
 XML::Atom::Feed->find_feeds(
 "http://www.diveintomark.org/");

 # Print each Atom feed URI
 foreach my $uri (@uris)
 {
 print "uri = '$uri'\n";
 }

In the above example, we see a single URI printed. Now that we know where
the feed is, we can get a list of links in it, turning those links into XML:

#!/usr/bin/perl

use strict;
use diagnostics;
use warnings;

use XML::Atom::Feed;

Get an Atom feed
my @uris = XML::Atom::Feed->find_feeds("http://www.diveintomark.org/");

foreach my $uri (@uris)
{
my $feed = XML::Atom::Feed->new(URI->new($uri));

my @links = $feed->link();

foreach my $link (@links)
{
 my $link_xml = $link->as_xml();
 print "link = '$link_xml\n";
}
}

Of course, we don't have to produce or display XML; we can parse the link
information, sending new links to subscribers by e-mail, adding them to a
database or ignoring those that fail to meet certain criteria.

Because Atom feeds are so regular, and because they operate using Internet
standards such as XML, Unicode and MIME, we can be confident that the
content our feed parses can be handled in straightforward ways. We can farm
out different content types to different handlers, parse them in different ways
and even (as in the newspaper example above) place them onto new feeds,
becoming a super-aggregator.

If you are interested in creating an aggregator or in understanding how to work
with the different myriad versions of RSS and Atom, it also is worth looking at
Mark Pilgrim's feed aggregator. Written in Python and constantly updated, this
is probably the best-documented piece of open-source engine for working with
syndication feeds.

 RSS or Atom?

So, should your Web site (or Weblog) provide syndication feeds in RSS, in Atom
or in both? It is clear to me that Atom is the best of the two (or three)
syndication format families produced to date. Dave Winer's RSS formats were
groundbreaking when they were released, but they have too many problems to
form the basis of full-fledged, enterprise-ready standards. We have seen the
agony that results from half-baked standards, such as early versions of HTML
and JavaScript, and given that syndication stands a good chance of becoming
an important communication mechanism, completeness and unambiguity are
important factors to consider.

It is similarly important to consider the growing international use of the
Internet and that people want to syndicate media other than text. Atom's lack

of ambiguity regarding special characters is another big step forward, ensuring
that we can include < and > in our Weblog entries without having to worry
about the implications for syndication. Most important, the planned provisions
for extensions will make it possible for Atom to meet the needs of specific
groups and applications without opening the entire specification anew.

Although Atom is remarkably complete, it is also straightforward to use. A great
deal of time and energy clearly have been put into making Atom as easy to use
as possible. Creating a new API is not a simple task, particularly when it is
meant to be as general as possible.

Finally, the mess of RSS version numbers that resulted in (and from) petty and
political arguments has served no one very well. Because Atom has a different
name, although literally an issue of semantics, it reduces the confusion that
developers and users alike face when working with RSS.

 Conclusion

Atom is an attempt to solve many of the problems associated with RSS and to
turn syndication into a building block for new types of high-level
communication across Internet applications. Atom is slightly more complicated
than Dave Winer's versions of RSS, but it is less complicated (in its initial
version) than RSS 1.0, which used RDF to describe and summarize Web sites.
The combination of easy-to-use software tools for working with Atom feeds, its
extensibility and the authors' commitment to being a part of the Internet
standards community, makes it clear that Atom will play a key role in the future
of Web communication.

Resources for this article: /article/7751.

Reuven M. Lerner, a longtime Web/database consultant and developer, now is
a graduate student in the Learning Sciences program at Northwestern
University. His Weblog is at altneuland.lerner.co.il, and you can reach him at
reuven@lerner.co.il.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/127/7751.html
http://altneuland.lerner.co.il
mailto:reuven@lerner.co.il
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/127/toc127.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Kernel Korner

AEM: a Scalable and Native Event Mechanism for Linux

Frédéric Rossi

Issue #127, November 2004

Give your application the ability to register callbacks with the kernel.

In a previous article [“An Event Mechanism for Linux”, LJ, July 2003], we
introduced the necessity for Linux to adopt a native and generic event
mechanism in the context of telecom. Many existing solutions attempting to
increase the capabilities of Linux have failed thus far. Others did not reach our
level of satisfaction, because carrier-grade platforms have different levels of
real-time requirements. In order to succeed, such an event mechanism must be
bound tightly to the host operating system and take advantage of its
capabilities in order to deliver better performance.

At the Open Systems Lab (Ericsson Research) in Montréal, Canada, we started a
project in 2001 to develop a generic solution, the Asynchronous Event
Mechanism (AEM). AEM allows an application to define and register callback
functions for some specific events and lets the operating system execute these
routines asynchronously when the events have been activated.

AEM provides an event-driven methodology of development. This is achieved
through the definition of a natural user interface in which event handlers
contain in their parameter lists all of the data necessary for their execution sent
directly by the kernel.

AEM also is motivated by the fact that complex distributed applications based
on multithreaded architectures have proven difficult to develop and port from
one platform to another because of the management layer. The objective of
AEM is not only to reduce the software's development time, but also to simplify
source code generation in order to increase portability between different
platforms and to increase the software's life cycle.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The biggest challenge of this project was designing and developing a flexible
framework such that adding or updating a running system with new event-
handling implementations is possible. The constraint was to be able to carry
out system maintenance without rebooting the system. The modular
architecture of AEM offers such capabilities.

AEM is a complementary solution to other existing notification mechanisms.
One of its great benefits is the possibility to mix event-driven code and other
sequential codes.

 AEM: Architecture Overview

AEM is composed of one core module and a set of loadable kernel modules
providing some specific event service to applications, including soft timers and
asynchronous socket interfaces for TCP/IP (Figure 1). This flexible architecture
permits AEM capabilities to be extended at will.

There is no restriction on what a module can implement, because each exports
a range of independent pseudo-system calls to applications. In fact, this allows
two different modules to make available the same functionality at the same
time. Interestingly, this offers the possibility of loading a new module to
implement an improved revision without breaking other applications—they
continue to use the older version. This design provides the ability to load the
necessary AEM modules depending on the applications' need or to upgrade
modules at runtime.

Figure 1. AEM is based on one core kernel module providing the basic event functionalities
and a set of independent kernel modules providing asynchronous event services to
applications.

https://secure2.linuxjournal.com/ljarchive/LJ/127/6980f2.large.jpg

Figure 2. Architecture behind event activation and process notification in AEM. Event wait
queues containing sleeping jobs are scanned, and all concerned jobs wake up at the
occurrence of an event. It immediately follows the activation of the corresponding event for
each related process.

The condition for such flexibility is the presence of event activation points
located at strategic places in the kernel (Figure 2). Each activation point is a
specific AEM queue used to activate events. In the following sections, we
describe the internals of AEM in detail.

 AEM: Internals Overview

The concept of asynchrony is a major problem when the main flow of a
program's execution is broken without warning in order to execute event
handlers. Input requests then are handled without the knowledge of previous
input states. These are delivered directly by the core kernel or the interrupt
handlers and are received without presuming any kind of order. This situation
constitutes a problem for some applications, including those based on TCP/IP,
which rely on the transaction state to proceed.

AEM is a three-layer architecture composed of a set of pseudo-system calls for
event management, a per-process event_struct performing event serialization
and storing context information in order to execute user callbacks and a per-
event job_struct performing event activation.

https://secure2.linuxjournal.com/ljarchive/LJ/127/6980f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/6980f2.large.jpg

 Events

From the AEM perspective, an event is a system stimulus that initiates the
creation of an execution agent, the event handler. Support is provided by the
event_struct, which is a structure initialized during event registration that
contains the context necessary to execute one event handler. Some of the main
fields are address of a user-space event handler, constructors and destructors
for the event handler and relationship with other events (list of events, child
events and active events—see Figure 3).

There can be as many registered events per process as necessary. When an
event is detected, we say it is activated, and the user-defined callback function
soon is executed. Events are linked internally in the same order as they arrive
into the system. It then is up to each handler constructor to manage the data
correctly and keep the events serialized for each process without presuming
any order of arrival.

Figure 3. The Relationship between a Process and Its List of Events.

Some process events are active and linked to an active events list. Upon
activation, an event can create a process. These events are called cloners, and
the relationships between these events and created processes are recorded
internally. An event registered by the top process in Figure 3 has created two
new processes below it. They remain attached to this event and keep their own
list of events.

https://secure2.linuxjournal.com/ljarchive/LJ/127/6980f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/6980f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/6980f3.large.jpg

Event handlers are used during event registrations and must be implemented
at the user level. They define their own fixed set of parameters in order to
provide event data completion directly to the user-space process. This
operation is done by event constructors and destructors executed right before
and right after handlers are called. Event handlers are executed in the same
context as the calling process. The mechanism is safe and re-entrant; the
current flow of execution is saved and then restored to its state prior to the
interruption.

A priority is associated with each event during registration that represents the
speed at which an application is interested to receive notification. It is possible
to register twice for the same event with two different priorities.

Other real-time notification mechanisms, such as the real-time extension of
POSIX signals, do not consider priorities during the scheduling decision. This is
important, because it allows a process receiving a high-priority event to be
scheduled before other processes. In AEM, the occurrence of an event pushes
the event handler to be executed depending on its priority. To some extent, an
event handler is a process, because it has an execution context. Changing
process priorities dynamically is a real issue when the rate of event arrival is
high, because priorities are updated quickly at the same rate. We solved this
problem by introducing a dynamic soft real-time value calculated using a
composition of event priorities. This value influences the scheduling decision
without affecting the Linux scheduler and brings soft real-time responsiveness
to applications.

 Jobs

A job is a new kernel abstraction introduced to serve events before notifying
processes. It is not a process, although both share the same conceptual idea of
executable entity. One typical action performed by a job is to insert itself into a
wait queue and stay there until something wakes it up. At that point, it quickly
performs some useful work, such as checking for data validity or availability
before activating the user event, and goes back to sleep. A job also guarantees
that while it is accessing some resource, no other job can access it. Several jobs
can be associated with one process, but there is only one job per event.

This abstraction layer between the kernel and the user process is necessary.
Otherwise, it is difficult to ensure consistency in checking for data availability or
agglomerating multiple occurrences of the same event when the handler is
executed. If something goes wrong, the process wastes time handling the event
in user space. Deciding whether to concatenate several notifications is event-
specific and should be resolved before event activation.

A generic implementation of jobs would consider software interrupts in order
to have a short latency between the time an event occurred and the time the
process is notified. The goal is to execute on behalf of processes and provide
the same capabilities as both an interrupt handler and a kernel thread, without
dragging along a complete execution context.

Two types of jobs are implemented, periodic jobs and reactive jobs. Periodic
jobs are executed at regular intervals, and reactive jobs are executed
sporadically, upon reception of an event. Jobs are scheduled by their own off-
line scheduler. According to the real-time theory of scheduling, both types of
jobs could be managed by the same scheduler (see the Jeffay et al. paper in the
on-line Resources). In our context, a job is a nonpreemptive task. By definition,
jobs have no specific deadlines, although their execution time should be
bounded implicitly because of their low-level nature. This assumption simplifies
the implementation. The constraint in our case is for reactive jobs to be able to
execute with a negligible time interval between two invocations so as to satisfy
streaming transfer situations.

Our implementation of periodic and reactive jobs is different in both cases in
order to obtain a better throughput in case of sporadic events. A job scheduler
and a dispatcher handle periodic jobs, whereas reactive jobs change state
themselves for performance reasons. Figure 4 describes the job state evolution
and functions used to move from one state to another.

Figure 4. The State Transition Graph for Periodic Jobs and Reactive Jobs

Once a job has activated the corresponding event, either a process is executed
asynchronously or the current flow of execution of the user program is
redirected somewhere else in the code. The user decides how to handle events
at registration time.

https://secure2.linuxjournal.com/ljarchive/LJ/127/6980f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/6980f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/6980f4.large.jpg

 Asynchronous Execution of Processes

Event handlers can be executed either by breaking the main thread's flow of
execution or by creating a new process to handle the event and execute it in
parallel. In either case, the event is managed transparently and asynchronously
without explicitly polling for its occurrences. This management has some
important implications, because an application does not have to reserve and
consume system resources before it is needed. For example, we adapted a
simple HTTP server for benchmarking AEM, which is fully single-threaded and
capable of quite good performance for that type of server. It is described at the
end of this article.

Sometimes situations arise in which it is necessary to create a new process as a
response to an event. Unfortunately, creating processes dynamically is
resource consuming; during that period, neither the new nor the parent
process is able to handle new requests. In some critical situations, there might
be no resource left for that purpose, such as a shortage of system memory.
This is a problem because emergencies might require creating new processes
to shut down the system gracefully or to carry out handover procedures.

For this reason, we introduced a new concept called capsules. A capsule is a
task structure already initialized and part of a pool containing other free
capsules. When a process wants to create a new execution context, a capsule is
linked out from that pool and is initialized with only a few of the current
process parameters.

During event registration, specific flags indicate whether a handler is to be
executed inside a process. No parameter or a 0 means the handler is to be
executed by breaking the current flow of execution. These flags are:

• EFV_FORK: to create a process with the same semantic as fork().
• EVF_CAPSULE: to create a process from the capsule pool.
• EVF_NOCLDWAIT: this flag has the same semantics as the signal

SIG_NOCLDWAIT. When the child process exists, it is re-parented to the
capsule manager thread.

• EVF_KEEPALIVE: to prevent the process/capsule from exiting by entering
into a kernel loop—like while(1); in user space.

 Memory Management

Memory management is a major issue for an event-driven system, because
events are handled by executing callback functions located in the application
space directly from the kernel. The simplest solution would be to allocate
memory when the process registers for an event. Consider, though, either the
case of a huge number of events to register or the case of a process that needs

to be restarted, needs new events to be added or needs events to be
unregistered. In case of failure in event management, the system integrity
becomes inconsistent. It is less critical for the operating system kernel to
manage such resources itself and allocate memory on demand on behalf of
processes.

Regarding performance, it is necessary to be able to allocate this memory
inside a pre-allocated pool to prevent memory fragmentation and maintain soft
real-time characteristics. Generic memory allocators, such as glibc's malloc(),
are not aligned with this requirement even if they provide good performance
for general purposes.

Some data types, such as integers, are passed to user space easily, but more
complex types, such as character strings, require specific implementations.
Process memory allocation is managed by the glibc library. This becomes
complicated if we want to allocate memory from the kernel, because we have
to take care that this new address is located correctly or mapped into the
process space. Allocating memory efficiently and simply on behalf of user
processes is something currently missing in the Linux kernel but needed.

AEM's vmtable is filling the gap in this area of memory allocation. It implements
a variation of the binary buddy allocator—covered in Knuth, see Resources—on
top of a user process memory pool. This permits the management of almost all
kinds of data of unplanned sizes. In the case of a real shortage of memory, it
can fall back on the user decision by using event handlers. This feature offers
the possibility of relying on glibc as a last resort if something bad happens.

AEM has been designed to return a valid pointer in constant time when free
blocks are available. This often is the case for telecom applications, which are
most likely to receive requests of the same size for the same type of
application. We also want to prevent memory fragmentation caused by a flood
of requests of different sizes in a short time interval.

vmtable also has an interesting extension: it can be used to provide user-space
initialization procedures for device drivers. This is possible using a pointer,
allocated from the kernel by the AEM subsystem and then passed up to the
user process in a callback function. It then is given back to the kernel when the
function returns. Callback functions are not only usable as a response to an
event, but also as a means to communicate safely with the kernel.

In this scenario, each user process is assigned a pool of memory called a
vmtable. Forked processes and capsules automatically inherit a vmtable,

depending on their parents' vmtable. Two different types of strategies are
implemented:

1. VMT_UZONE: allocation is done inside process' heap segment. This
provides fast access but consumes the user process address space.

2. VMT_VZONE: allocation is done in the kernel address space and mapped
inside process' address space. This provides minimal memory
consumption, but accesses take more time due to the page faults
handling.

Both strategies carry some advantages and disadvantages, depending on the
situation. The preferred strategy is chosen at runtime when starting the
application. Figure 5 illustrates the architecture layout of vmtable.

Figure 5. The Architectural Layout of vmtable

In the current implementation, physical pages are allocated explicitly by the
vmtable subsystem. This is done to ensure that they really are allocated
contiguously, so the memory pool can be used safely for I/O operations. A
future extension is to use vmtable for direct I/O in the context of network
performance.

vmtable exports a simple and easy-to-use interface to AEM users and module
developers, hiding the complexity of memory allocation in kernel space. Simple
routines are implemented in the AEM core module to allocate and free memory
in a transparent manner. This interface greatly simplifies maintenance of
modules and their adaptations between different Linux kernel releases.

https://secure2.linuxjournal.com/ljarchive/LJ/127/6980f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/6980f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/6980f5.large.jpg

 Scalability

We performed testing to measure the behavior of AEM during a simple
exchange between two remote processes. This test was done to ensure the
time needed to context switch an event handler did not cause a performance
problem. More recently, we also performed benchmarking to measure the
scalability of AEM and to test the internal implementation of jobs and wait
queues, which represent the base functionality of AEM.

Figure 6. AEMhttpd, a single-threaded HTTP server used to make scalability measurements of
the AEM internal implementation. Here we have performed 100 active connections for each
sample.

In order to generate figures we could compare easily, we decided to use an
existing Web server and adapt it with the AEM interface. AEMhttpd is a simple
single-threaded HTTP server (see Resources.) A single-threaded server runs
entirely in the main thread of execution. It means that neither kernel threads
nor user threads are created to handle HTTP requests. The measurements
done with this type of server focus on the implementation capabilities rather
than on the performance of the server itself.

In the example illustrated in Figure 6, we have run 100 active transactions. For
each transaction, we increased the number of open connections to increase the
number of jobs in the sockets' connection wait queues. In a standard server
implementation based on select(), this would have increased the time to
respond to requests, because all descriptors would have been scanned in
sequence. With AEM, only active jobs (that is, sockets with data ready) execute
their corresponding event handlers. This proves that AEM provides a generic
and scalable implementation.

https://secure2.linuxjournal.com/ljarchive/LJ/127/6980f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/6980f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/6980f6.large.jpg

 Conclusion

Linux is widely used in the industry, imposing itself as the operating system of
choice for enterprise-level solutions. It also is on the edge of becoming the
operating system of choice for the next-generation IP-based architectures for
telecom services. There already is a wide acceptance of Linux capabilities, but
providing enhancements at the kernel level will attract the next-generation
service providers that demand scalability, performance and reliability.

AEM is a solid attempt to provide the asynchronous notification of processes
together with event data completion. It also brings an event-driven
methodology that enables a secure programming paradigm for application
developments. In addition, AEM implements a mechanism that focuses on
increasing application reliability and portability by exporting a simple user
interface.

 Acknowledgements

All of the researchers at the Open Systems Lab and Lars Hennert at Ericsson for
their useful comments, and Ericsson Research for approving the publication of
this article.

Resources for this article: /article/7746

Frédéric Rossi (Frederic.Rossi@ericsson.ca) is a researcher at the Open Systems
Lab at Ericsson Research, in Montréal, Canada. He is the creator of AEM and the
main driver behind its development.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/127/7746.html
mailto:Frederic.Rossi@ericsson.ca
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/127/toc127.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Cooking with Linux

Performing at the Speed of Light

Marcel Gagné

Issue #127, November 2004

Now you can come up with a spaceship design that will look good even when
the red shift kicks in. Watch relativity, star maps and more.

You are right, François, computers and operating systems have come a long
way. Not only do we have the good fortune to be running the operating system
of the future today, but we can take advantage of machines that are faster than
ever before. I remember with some, well, I hesitate to call it fondness, but I do
remember my first x86-based PC. It was a turbo-charged XT with a processor
that ran at 10MHz. I also spent a small fortune upgrading its RAM from 640K to
1,024K by plugging a couple of dozen chips in to IC slots on the main board.

Quoi? Of course not, mon ami, although that stuff was fun at the time, I would
not give up the technology of today. That almost would be like giving up Linux
for another operating system. You know, François, it's interesting to think about
exactly how far we have come—from megahertz to gigahertz processors in only
a few short years! Where will we end up in another ten years? I suppose that
faster than the speed of light may be possible, though I fear it may take
somewhat longer, mon ami. Still, you have given me an idea.

Mon Dieu! Our guests are here already. To the wine cellar, immédiatement!
Head to the north wing and check behind that new shipment of Bordeaux
wines Henri delivered yesterday. You'll find a few cases of 2000 Châteauneuf-
du-Pape. Forgive me, mes amis. Please sit and make yourselves comfortable.
François and I were discussing how far technology has come in the last few
years. My faithful waiter brought up the idea of faster-than-light computing,
certainly the ultimate in high-performance computing, this issue's theme. Even
if we could have computers delivering information at beyond light speed, we
still would need to absorb information at our own pace. One thing is for sure,

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

we wouldn't see the stars zipping by as we read the latest on-line Linux Journal
column.

In terms of high performance, nothing beats the speed of light, at least not
without some strange matter or access to a matter/anti-matter engine and
some dilithium crystals. You can get that feeling by firing up your screensaver
and selecting rocks if you are using xscreensaver or the OpenGL space in KDE's
own list. How objects look as you approach the speed of light is a popular
mainstay of science-fiction films, but generally speaking, we never get to see
what it actually might look like. That was the inspiration behind Daniel Richard
G.'s Light Speed!, a program designed to show precisely what happens to our
view of an object as it approaches the speed of light. The program takes into
consideration various relativistic effects, such as Lorentz contraction, red/blue
Doppler shift, headlight effect and optical aberration. The About page on the
Light Speed! Web site describes all these effects (see the on-line Resources).

Mes amis, you are sure to enjoy this wine—truly high-performance strength,
dark fruit flavors, a hint of coffee and mocha and a long finish. Enjoy it while we
crank up the speed a bit. The build is very easy. You should be aware that you
need the OpenGL or Mesa development libraries loaded as well as the
gtkglarea libraries. From there, it's a simple extract and build five-step:

tar -xzvf lightspeed-1.2a.tar.gz
cd lightspeed-1.2a
./configure
make
su -c "make install"

Start the program by running lightspeed. You should see a window appear
with a three-dimensional lattice cube. In the upper right-hand side, an input
box lets you enter a speed in meters per second. Start with something fairly
high; you also can use the up and down arrow keys to increase or decrease
speed with finer control. When you press Enter, the object is accelerated to that
speed with the resulting effects shown in the graphical window.

A cube getting distorted as it approaches the speed of light is only so
interesting, although you can create a more complex lattice by clicking File on
the menu bar, selecting New Lattice and choosing the number of points in
three dimensions. The real question on my mind is what happens to a
spaceship as it approaches the speed of light? Luckily, the Light Speed! Web site
also has an objects download feature that you should pick up too. It contains
three additional objects, including a model of the starship from Star Trek
Voyager (Figure 1). To use a different model, click File and select Load Object.

https://secure2.linuxjournal.com/ljarchive/LJ/127/7728f1.large.jpg

Figure 1. What really happens to a starship as it approaches the speed of light?

One of the more interesting things you can do to extend this bit of educational
fun is to head over to the 3-D Cafe (see Resources), where you will find a lot of
three-dimensional models and meshes to try. Don't limit yourself to
spaceships, though; a race car approaching light speed also is fun to use. Keep
in mind that only models with a 3DS (3D Studio) or LWO (LightWave 3D)
extension work with this feature.

As much fun as it is to imagine what really happens under these conditions,
what we all really want to do is go flying through space at warp ten while the
stars zip by, arriving at some distant world before we can empty another bottle
of wine. For just such a trip, get your hands on Chris Laurel's Celestia. With
Celestia, you can tour around our solar system, visit over 100,000 different
stars, check out what's happening with various Earth-launched spacecraft and
much more. Source is available on the site, but there are binaries for Mandrake
and SuSE and others also are available. If you can't find binaries for your
distribution, never fear. Because this is an OpenGL project, you need the 3-D
libraries, but the build itself simply is another extract and build five-step:

tar -xzvf celestia-1.3.1.tar.gz
cd celestia-1.3.1
./configure
make
su -c "make install"

To run the program, call celestia from the command line or your command
launcher. You need to know about a few keystrokes right now, because they

https://secure2.linuxjournal.com/ljarchive/LJ/127/7728f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7728f1.large.jpg

make the experience that much more fun. Pressing the letter L accelerates time
by a factor of ten. Doing so puts your travel through space in motion relative to
whatever object you have chosen as your point of reference. Pressing K
decelerates time, should you start going a little too fast. Pressing Alt-C brings
up the Celestia browser from which you can select objects of many flavors. At
the bottom of the screen are four radio buttons. Click the With planets button,
and a list of stars with known planets appears. Want to visit the planet orbiting
51 Pegasi? Right-click on the object's name, select Goto and strap yourselves in
for a faster-than-light trip to this alien world. Once there, right-click on the star,
51 Pegasi, select Follow and you can watch the planet's orbit as you remain
focused on the star.

Keystrokes also let you specify the representation of stars, from tiny pinpricks
to fuzzy points to scaled discs. To find out what all the keystrokes do, click
Settings on the menu bar and select Configure Shortcuts.

Celestia is a great program to sit back and explore and is well worth the
download. Aside from stars and planets, you can visit spacecraft currently
orbiting nearby worlds, such as the Mars Global Surveyor. Try heading for the
spacecraft, click on Mars and then select follow (Figure 2). Now accelerate time.
A number of major asteroids also are in the database if you'd prefer a trip to
Eros.

Figure 2. Tracking the Spacecraft Orbiting Mars

If zooming through space at or exceeding the speed of light is enough to turn
your stomach not to mention your face a few shades of green, then perhaps a
more down-to-earth space-based approach is in order. Why not observe the

https://secure2.linuxjournal.com/ljarchive/LJ/127/7728f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7728f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7728f2.large.jpg

stars and planets from the comfort of your non-moving seat? The best way to
do this is with a great program called KStars, originally created by Jason Harris.

KStars is a desktop planetarium program that displays the locations of stars
and planets on your desktop. Because KStars is a part of the KDE desktop
environment—included in the kdeedu package—you don't have to look far to
get a copy. You can find the latest on the package by visiting the Web site.

KStars is amazing fun but much more than a toy. With a database of the
planets, 130,000 stars, 13,000 deep-sky objects, the planets and many
asteroids, KStars is an astronomical treasure. With it, you visually can identify
the position of stars, galaxies, nebulae and other glories of the night sky. You
can control what is displayed, zoom in on objects and—I love this part—
download images from on-line resources, such as the Hubble and the Space
Telescope Science Institute. Simply right-click on an object of interest, and the
pop-up offers you additional information and links to high-resolution images of
those objects when appropriate. Figure 3 shows my KStars session pulling up
information on the Trifid Nebula.

Figure 3. KStars can import images from on-line databases such as Hubble's.

When you start KStars, it assumes your location is Greenwich, United Kingdom,
which probably is not what you want. Start by clicking Location on the menu
bar and selecting Geographic. A dialog box will appear with a world map. Click
an area on the map close to where you live. Doing so provides you with a list of
geographical points in a list to the right of the map. Make your selection and

https://secure2.linuxjournal.com/ljarchive/LJ/127/7728f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7728f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7728f3.large.jpg

click OK. Should you happen to know your latitude and longitude, you can enter
that at the bottom of the window instead.

KStars includes much more than what I can cover in this short visit. For
instance, KStars can control your telescope, locating and tracking objects.
Furthermore, if you are into astro-photography, KStars can control CCDs,
currently supporting Finger Lakes Instruments devices with others in
development.

Mon Dieu! Although it may not have happened at hyper-light speeds, it
certainly has happened fast. Yes, I'm talking about the clock, mes amis, which
already is telling us it is closing time. With talk of moving so quickly, it is at times
like this that we can truly appreciate sitting back under a starlit night, slowly
sipping a little more of this excellent Châteauneuf-du-Pape. Until next time,
mes amis, let us all drink to one another's health. A votre santé Bon appétit!

Resources for this article: /article/7753.

Marcel Gagné (mggagne@salmar.com) lives in Mississauga, Ontario. He is the
author of the all-new Moving to the Linux Business Desktop (ISBN
0-131-42192-1), his third book from Addison-Wesley. In real life, he is president
of Salmar Consulting Inc., a systems integration and network consulting firm.
He is also a pilot, writes science fiction and fantasy, and folds a mean origami T-
Rex.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/127/7753.html
mailto:mggagne@salmar.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/127/toc127.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Paranoid Penguin

Linux Filesystem Security, Part II

Mick Bauer

Issue #127, November 2004

We covered the fundamentals of permissions last month. Now it's time to learn
some useful bits to make cooperation among users convenient and secure.

Last time, we looked at file and directory permissions from the ground up—
what users and groups are and how to set and remove read, write and execute
permissions on files and directories. In this column, we look at some more
advanced types of permissions, explore permission numeric modes and the
command umask and see how to delegate root's authority with su and sudo.
This article contains more intermediate-level information than last month's, but
hopefully it should make sense, even if all you know about permissions is what
you read here last time.

 The Sticky Bit

Recall last month's long listing of the extreme_casseroles/ directory:

drwxr-x--- 8 biff drummers 288 Mar 25 01:38 extreme_casseroles

Recall also that we set the group permissions on this directory to r-x, that is,
group-readable and group-executable, so that our fellow members of the
drummers group could enter this directory and enjoy the recipes stored
therein.

Suppose that our drummer friend Biff wants to allow his fellow drummers not
only to read his recipes but to add their own as well. As we saw last time, all he
needs to do is set the group-write bit for this directory, like this:

chmod g+w ./extreme_casseroles

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

There's only one problem with doing that, however. Write permissions include
both the ability to create new files in this directory and also to delete them.
What's to stop one of his drummer pals from deleting other people's recipes?
The sticky bit, that's what.

In olden times, the sticky bit was used to write a file (program) to memory so it
would load more quickly when invoked. On Linux, however, it serves a different
function. When you set the sticky bit on a directory, it limits people's ability to
delete things in that directory. That is, to delete a given file in the directory you
either must own that file or own the directory, even if you belong to the group
that owns the directory and group-write permissions are set on it.

To set the sticky bit, issue the command:

chmod +t directory_name

In our example, this would be chmod +t extreme_casseroles. If we now
do a long listing of the directory itself, by using ls with the -d option to list the
directory's permissions rather than its contents, that is, ls -ld
extreme_casseroles, we see:

drwxrwx--T 8 biff drummers 288 Mar 25 01:38 extreme_casseroles

Notice the T at the end of the permissions. We'd normally expect to see either x
or - there, depending on whether the directory is other-writable. The T denotes
that the directory is not other-executable and has the sticky bit set. A lowercase
t would denote that the directory is other-executable and has the sticky bit set.

To illustrate what effect this restriction has, suppose a listing of the contents of
extreme_casseroles/ looks like Listing 1.

Listing 1. Contents of extreme_casseroles/

drwxrwxr-T 3 biff drummers 192 2004-08-10 23:39 .
drwxr-xr-x 3 biff drummers 4008 2004-08-10 23:39 ..
-rw-rw-r-- 1 biff drummers 18 2004-07-08 07:40 chocolate_turkey_casserole.txt
-rw-rw-r-- 1 biff drummers 12 2004-08-08 15:10 pineapple_mushroom_surprise.txt
drwxr-xr-x 2 biff drummers 80 2004-08-10 23:28 src

Suppose further that the user crash tries to delete the file
pineapple_mushroom_surprise.txt, which crash finds offensive. crash expects
this to work, because he belongs to the group drummers and the group-write
bit is set on this file. Remember, though, that biff set the parent directory's
sticky bit. Therefore, crash's attempted deletion fails, as we see in Listing 2.

Listing 2. Attempting Deletion with Sticky Bit Set

crash> rm pineapple_mushroom_surprise.txt
rm: cannot remove `pineapple_mushroom_surprise.txt':
Operation not permitted

One more note on the sticky bit: it only applies to the directory's first level
downward. In Listing 1, you may have noticed that besides the two nasty
recipes, extreme_casseroles/ also contains another directory, src. The contents
of src will not be affected by extreme_casseroles' sticky bit, although the
directory src itself is. If biff wants to protect src's contents from group deletion,
he needs to set src's own sticky bit.

 setuid and setgid

Now we come to two of the most dangerous permissions bits in the world of
UNIX and Linux, setuid and setgid. If set on an executable binary file, the setuid
bit causes that program to run as its owner, no matter who executes it.
Similarly, when set on an executable, the setgid bit causes that program to run
as a member of the group that owns it, again regardless of who executes it.

When I say run as, I mean the program runs with the same privileges as. For
example, suppose biff writes and compiles a C program, killpms, that behaves
the same as the command rm /extreme_casseroles/
pineapple_mushroom_surprise.txt. Suppose further that biff sets the
setuid bit on killpms, with the command chmod +s ./killpms and also
makes it group-executable. A long listing of killpms might look like this:

-rwsr-xr-- 1 biff drummers 22 2004-08-11 23:01 killpms

If crash runs this program, he finally can succeed in his quest to delete the
Pineapple-Mushroom Surprise recipe: killpms runs as though biff had executed
it. When killpms attempts to delete pineapple_mushroom_surprise.txt, it
succeeds because the file has user-write permissions and killpms is acting as its
user/owner, biff.

IMPORTANT WARNING

setuid and setgid are very dangerous if set on any file owned by root or any
other privileged account or group. I'm illustrating setuid and setgid so you
understand what they do, not because I think you actually should use them for
anything important. The command sudo, described later in this article, is a
much better tool for delegating root's authority.

If you want a program to run setuid, that program must be group-executable or
other-executable for what I hope are obvious reasons. In addition, the Linux
kernel ignores the setuid and setgid bits on shell scripts. These bits work only
on binary (compiled) executables.

setgid works the same way but with group permissions. If you set the setgid bit
on an executable file with the command chmod g+s filename, and if the
file also is other-executable (-r-xr-sr-x), when that program is executed it runs
with the group ID of the file rather than of the user who executed it.

In the above example, if we change killpms' other permissions to r-x (chmod
o+x killpms) and make it setgid (chmod g+s killpms), no matter who
executes killpms, killpms exercises the permissions of the drummers group,
because drummers is the group owner of killpms.

 setgid and Directories

What about directories? Well, setuid has no effect on directories, but setgid
does, and it's a little non-intuitive. Normally, when you create a file, it's
automatically owned by your user ID and your (primary) group ID. For example,
if biff creates a file, the file has a user owner of biff and a group owner of
drummers, assuming that drummers is biff's primary group, as listed in /etc/
passwd.

Setting a directory's setgid bit, however, causes any file created in that directory
to inherit the directory's group owner. This is useful if users on your system
tend to belong to secondary groups and routinely create files that need to be
shared with other members of those groups. For example, if the user animal is
listed in /etc/group as being a secondary member of drummers but is listed in /
etc/passwd has having a primary group of muppets, then animal has no trouble
creating files in the extreme_casseroles/ directory, whose permissions are set
to drwxrwx--T. However, by default, animal's files belong to the group
muppets, not to drummers, so unless animal manually reassigns his files' group
ownership (chgrp drummers newfile) or resets their other permissions
(chmod o+rw newfile), other members of drummers cannot read or write
animal's recipes.

If, on the other hand, biff or root sets the setgid bit on extreme_casseroles/
(chmod g+s extreme_casseroles), when animal creates a new file
therein, the file has a group owner of drummers, exactly like
extreme_casseroles/ itself. All other permissions still apply; if the directory in
question isn't group-writable to begin with, the setgid bit has no effect, because
group members are not able to create files inside it.

Now we've covered all possible permissions: read, write, execute, sticky bit,
setuid and setgid. If you understand all six of these, you're probably in the
minority of Linux users. But wait, there's more!

 Numeric Modes

So far we've been using mnemonics to represent permissions—r for read, w for
write and so on. Needless to say, as with everything else, your system actually
uses numbers to represent permissions. The chmod command recognizes both
mnemonic permission modifiers (u+rwx,go-w) and numeric modes.

A numeric mode consists of four digits: as you read left to right, these
represent special permissions, user permissions, group permissions and other
permissions. Recall that other is short for other users not covered by user
permissions or group permissions. For example, 0700 translates to no special
permissions set, all user permissions set, no group permissions set and no
other permissions set.

Each permission has a numeric value, and the permissions in each digit place
are additive: the digit represents the sum of all permission bits you want to set.
If, for example, user permissions are set to 7, this represents 4 (the value for
read) plus 2 (the value for write) plus 1 (the value for execute).

As I just mentioned, the basic numeric values are 4 for read, 2 for write and 1
for execute. (I remember these by mentally repeating the phrase, read-write-
execute, 4-2-1.) Why no 3, you might wonder? Because this way, no two
combination of permissions have the same sum.

Special permissions are as follows: 4 stands for setuid, 2 stands for setgid and 1
stands for sticky bit. For example, the numeric mode 3000 translates to setgid
set, sticky bit set and no other permissions set, which is, actually, a useless set
of permissions.

Here's one more example of a numeric mode. If I issue the command chmod
0644 mycoolfile, I am setting the permissions of mycoolfile, as shown in
Figure 1.

Figure 1. Permissions for mycoolfile

For a more complete discussion of numeric modes, see the info page for
coreutils, node Numeric Modes. That is, enter the command info
coreutils numeric.

 umask

I want to cover one last command specific to permissions before closing with a
couple of other topics. umask is a command built into the bash shell that prints
or sets your default permissions mask. To see yours, simply enter the umask
command without any arguments; it returns a four-digit number. On my
system, it looks like Listing 3.

Listing 3. Checking My Default Permissions Mask

mick@localhost:/home/mick> umask
0022

Mode 0022 means no special permissions, no user-owner permissions, group
and other permissions set to write, right? How can that be?

Actually, umask deals in masks, not in modes per se. 0022 is what is subtracted
from the number 0777 to determine the numeric mode of files you create:
0777 – 0022 = 0755.

Aha! So, files I create have user-owner permissions set to read-write-execute (7
= 4 + 2 + 1) and group and other permissions set to read-execute (5 = 4 + 1)?
Right? Almost. It also happens that umask sets the execute bit automatically
only on directories. Even if your permissions mask includes execute
permissions, the execute bit does not set automatically on regular files you
create. So, if my permissions mask is 0022, resulting in default permissions of
0755, and I create a file named default_file and a directory named default_dir,
long listing output for those two items look like Listing 4.

Listing 4. File and Directory with Mask of 0022

-rwxr-xr-x 2 mick users 48 2004-08-13 08:31 default_dir
-rw-r--r-- 1 mick users 4 2004-08-13 08:31 default_file

To change your default permissions mask, simply issue the command umask
with the new mask as its argument. For example, if I want all my files to have
group-read permissions but no other permissions, this translates to a numeric
mode of 0740. If I subtract that from 0777 I get a mask of 0037. Therefore, the
umask command I enter is umask 0037. This new mask, however, applies
only to my current session and any new shells I start from it. To make it
persistent, I can add the line umask 0037 to my .bashrc file.

 su and sudo

I should say a few words about the reality of users, groups and permissions.
The whole problem with UNIX security is that far too often, permissions and

authority on a given system boil down to root can do anything, although users
can't do much of anything.

Sadly, it's much easier to do a quick su - to become root for a while than it is
to create a granular system of group memberships and permissions that allows
administrators and sub-administrators to have exactly the permissions they
need. Sure, you can use the su command with the -c option, which allows you
to specify a single command to run as root rather than an entire shell session
(for example, su -c rm somefile.txt), but this requires you to enter the
root password. It's never good for more than a small number of people to
know root's password.

Another approach to solving the root-takes-all problem is to use role-based
access control (RBAC) systems, such as SELinux, which enforce access controls
that reduce root's effective authority. However, this makes things even more
complicated than setting up effective groups and group permissions. This is not
to say that SELinux and the rest aren't good things—I love RBAC.

A better middle ground is to use the sudo command. sudo is short for
superuser do, and it allows users to execute single commands as root, without
actually needing to know the root password. sudo is now a standard package
on most Linux distributions.

sudo is configured with the file /etc/sudoers, but you shouldn't edit this file
directly. Rather, use the visudo command, which opens a editor on the file; vi is
the editor by default. You can use a different editor by setting the EDITOR
environment variable. For example, to use /usr/bin/gedit, do this:

export EDITOR=/usr/bin/gedit

Space doesn't permit me to explain sudoers' syntax in detail; see the
sudoers(5), sudo(8) and visudo(8) man pages for complete information. In the
space available here, let's run through a quick example.

Remember the user crash's quest to rid the world of Pineapple-Mushroom
Surprise? Although in this case it would be overkill—the permissions techniques
I've already illustrated are sufficient—you could use sudo to allow crash to
realize his goal, assuming you (biff) have root privileges. First, become root (su
-). Next, execute the command visudo. You're now in a vi session, editing the
file /etc/sudoers; see the vi(1) man page if you're new to vi. Go down to the
bottom of the file and add this line:

crash localhost=/bin/rm /home/biff/extreme_casseroles/pineapple_mushroom_surprise.txt

Save and exit the file.

Now, to do his thing, crash enters the command:

sudo rm /home/biff/extreme_casseroles/pineapple_mushroom_surprise.txt

whereupon he is prompted to enter his password. After he enters this correctly,
the command:

/bin/rm /home/biff/extreme_casseroles/pineapple_mushroom_surprise.txt

is executed as root, and the offending file is gone.

Alternately, the line in /etc/sudoers could look like this:

crash localhost=/bin/rm /home/biff/extreme_casseroles/*

That way, crash can delete anything in extreme_casseroles/, regardless of the
sticky bit setting.

As handy as it is, sudo is a powerful tool, so use it wisely; root privileges never
should be trifled with. It really is better to use user and group permissions
judiciously than to hand out root privileges, even with sudo. Better still, use an
RBAC-based system such as SELinux if the stakes are high enough.

That's it for now. I hope you've found this tutorial useful. Until next time, be
safe!

Mick Bauer, CISSP, is Linux Journal's security editor and an IS security
consultant in Minneapolis, Minnesota. He's the author of Building Secure
Servers With Linux (O'Reilly & Associates, 2002).

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/127/toc127.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux for Suits

We're Going to Be a 90% Linux Shop

Doc Searls

Issue #127, November 2004

The biggest Linux success story is one too few IT workers can tell. Linux and
open source are pushing proprietary software out to the edges and taking over
the core, where the money is.

At the O'Reilly Open Source Convention (OSCon) last summer, the killer talk
wasn't one of the keynotes, although most of those were excellent. It was a
breakout session called “Commercial OSS Business”. The panel featured an A-
list lineup: Matt Asay, Director of Novell's Linux Business Office and founder of
the Open Source Business Conference; Brian Behlendorf, founder of the
Apache Foundation and CollabNet; Bob Lisbonne, a VC with Matrix Partners;
Jason Matusow, Director of Microsoft's Shared Source Initiative; and Zack
Urlocker, Marketing VP with MySQL. The moderator was Tim O'Reilly himself.

They all had terrific stuff to say—much of it quotable. Yet the best contributor
to the session wasn't a panelist at all, but an audience member who grabbed
the microphone, stood in front of the stage and put on a performance worthy
of Frank Sinatra fronting Tommy Dorsey's band. It was Phil Moore, Executive
Director in the UNIX Engineering team at Morgan Stanley. He began:

I work for the 38th largest company in the world,
Morgan Stanley. We have a billion dollar IT budget.
And we use a little of everything. Unfortunately.
Excuse me, a LOT of everything. The trend I've seen in
the last ten years...is the exponential growth in the
variety and the depth and breadth of installation of
open-source software in our infrastructure....What I'm
seeing is that in the infrastructure, the core
infrastructure, open source is going to take over, leaps
and bounds....I'm predicting, right now, that by 2006 or
2007, we're going to be a 90% Linux shop.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

He spoke for several minutes, pacing in front of the stage, addressing both the
audience and the panel. When he finished, there was applause.

Phil's speech was so compelling for three reasons beyond the content of his
talk. First, he was a customer rather than a vendor. It's customary at
tradeshows for vendors to fill session panels. As good as this panel was,
nothing any panelist could say carried the authority that comes from real
customers. Second, Phil clarified market roles by making it obvious that
customers are in charge of adoption—not vendors. Third, he testified to the
enormous success of The SCO Group's “Fear, Uncertainty and Doubt” (FUD)
campaign by being courageous enough to stand up and speak out about it.

At one point in his soliloquy, Phil said, “We're still mostly a Solaris shop, but we
are rapidly moving to Linux, though I'm not supposed to talk about that, for
fear of being sued by SCO.” Then he turned to Matt Asay and said, “Which is the
reason why I couldn't go to your conference, the OSBC. I wasn't allowed to go.”
That filled a blank for me, because Phil was slated to be on my DIY-IT panel at
OSBC and couldn't make it; now I knew why. His cancellation brought the
number of AWOL panelists to two out of the original four. The other panelist
came to the conference but was told at the last minute by his employer that he
couldn't speak, and he ended up sitting in the audience. Significantly, the two
absentees were from large companies with buildings full of lawyers. To his and
his employer's credit, R0ml Lefkowitz of AT&T Wireless did make the panel, as
well as a speech of his own given the same day at the conference.

But at OSCon, Phil got to speak, and the message he carried was one I've been
hearing privately from many other IT professionals: Linux is rapidly becoming
default infrastructure, and open source is the preferred code condition for all
infrastructure. Not that they're abandoning Microsoft—far from it. But
Microsoft's primary goods—desktop operating systems and applications—are
becoming niched to the verge of quarantine. Phil made this clear when he
turned to Jason Matusow of Microsoft and said, “You can have the desktop. It's
a pain in the ass. I don't want it. I just want the (core) where all the money's
made.”

Later he added, “I will bet my career that Microsoft is going to get wiped out on
the desktop in the next ten years. Not in this country.” Turning again to Jason,
he said, “You're going to own it here because America loves you guys. You're
set, for at least ten years.” Turning back to the audience, he continued:

Look overseas at what's happening [with Linux]. It
doesn't matter what distribution. Because [Linux is]
economical for people in foreign countries. It lets them
invest in their own local software companies without
putting money into these guys' pockets [indicates
Microsoft] or some other foreign corporation that

doesn't have a vested interest in your own economy
and your own culture. That's going to be the number
one reason why open source ends up taking over the
planet.

As for other vendors serving the IT space, he said, “I think you'll see proprietary
companies shifted out to the leaf nodes, coming up with special-purpose
applications that are difficult to do on a large scale.” But in his current role as
an enterprise IT architect, Phil Moore still supports Microsoft desktops in the
midst of a growing infrastructure comprised of Linux and other open-source
building materials. And, he expects to maintain that relationship for the
foreseeable future.

While Phil and the others were talking, I realized that open source and the
proprietary software industry are at crossed purposes only where they
compete outright. But when Linux and open-source products serve as
infrastructural support, Microsoft OSes and apps are supported along with
everything else.

In conversations that followed, out in the halls at OSCon and in subsequent
meetings at OSCon and LinuxWorld Expo, which followed the next week, I
began to visualize the subject, starting with the traditional industrial market
model. This model was best described by John Perry Barlow in his 1995 essay
“Death From Above”, which argued against the asymmetrical bandwidth
delivery plants that the cable and phone companies then were beginning to
build out. Here's how it begins:

Over the last 30 years, the American CEO Corps has
included an astonishingly large percentage of men
who piloted bombers during World War II. For some
reason not so difficult to guess, dropping explosives
on people from commanding heights served as a great
place to develop a world view compatible with the
management of a large post-war corporation.

It was an experience particularly suited to the style of
broadcast media. Aerial bombardment is clearly a one-
to-many, half-duplex medium, offering the bomber a
commanding position over his “market” and terrific
economies of scale.

This industrial tradition has a number of ideals. The most obvious one is to sell
unique and proprietary products to the largest number of people. Less obvious,
but no less important, is to create and sustain market categories populated
with intermediaries and to hold as many dependents as possible—from
distributors and OEMs on down to customers—captive on the manufacturer's
platform.

The Open Source and Free Software movements are driven by ideals that are
roughly orthogonal to the few-to-many model. To describe those ideals, also
found in the Internet's original architecture, it helps to start with the qualities of
open-source products: nobody owns them, everybody can use them and
anybody can improve them. It's tempting to call this Peer to Peer, but to is not
the operative preposition here. Hacking may involve the transport of packets,
but the collaborative activities involved are with, not to.

Juxtapose any with any on few to many, and you can see the cross-purposed
result. It's easy to see how this presents a problem, not only for software giants
such as Microsoft but for few-to-many empires including the entertainment
industry and consumer electronics. Protecting few-to-many from any with any
has become a cause for the whole entertainment industry. The Digital
Millennium Copyright Act, lobbied through Congress in 1998, is landmark
achievement in paranoia.

Yet now large customers such as Morgan Stanley show us we misconceive the
market when we see only conflict between open-source and proprietary
software business imperatives. They make this clear when they put any with
any in a supportive position beneath few to many. By its relationship-agnostic
nature, any with any can include and support peer to peer, many to many,
business to business or any other pair of nouns flanking a preposition.

If Linux is infrastructure, where does infrastructure fit? This question matters,
because it provides the context within which paranoid few to many forces
attempt to control infrastructure and prevent any with any from working.

That context is best described in the “layers of time” diagram from the Long
Now Foundation that we first visited in May 2002.

Figure 1. The Long Now Foundation's “Layers of Time” Diagram

This is a model of basic dependencies, as well as a way to sort out differences
in rates of change. Each higher level depends on the one below it. That's how
the few-to-many system, which operates at the Commerce level, depends on
Infrastructure. It's also why commercial interests often work to control
infrastructure one layer below, at the Governance level, often with great
success. In fact, regulatory systems around the world have served commercial
interests for centuries.

Open-source infrastructure, however, was established at fashion-level speeds—
faster than industrial establishments could react in most cases. Given the
amorphous and ungovernable nature of the Net, regulating it presented a
severe challenge. Plus, it brought too many benefits. Today, it's a risk for
companies not to take advantage of any-with-any infrastructure.

The single unqualified lobbying success against any-with-any was the DMCA, a
big, bad, dumb piece of legislation that needs to be repealed. Meanwhile,
plenty of badness still is reposing in old copyright and patent law. Without that
badness, SCO's FUD campaign would not have been so successful. And that
success is much more widespread than it appears, precisely because it's
working. With the rare exception of guys like Phil Moore, IT workers at big
companies aren't telling Linux success stories.

I've avoided writing about SCO ever since it made news by suing IBM early last
year. First, I believed SCO had no case. Second, given this column's three-
month lead time, writing about the subject seemed pointless. But paranoia
about discussing Linux and open source has become a prevailing condition

inside large companies. Legal departments began putting IT workers and
everybody else under gag orders as soon as SCO began suing large customers,
such as Daimler-Chrysler. This has caused a news hole of massive dimensions,
even though it's not especially visible at vendor-centric conferences or in
vendor-driven publications.

So, although everybody continues to handicap the futures market in Linux
desktops, the real challenge is talking about how successful Linux really is in the
enormous and far more important market for enterprise infrastructure.

Resources for this article: /article/7755.

Doc Searls (info@linuxjournal.com) is senior editor of Linux Journal. His
monthly column is Linux for Suits and his biweekly newsletter is SuitWatch. He
also presides over Doc Searls' IT Garage (garage.docsearls.com), a sister site to
Linux Journal on the Web.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/000/7755.html
mailto:info@linuxjournal.com
http://garage.docsearls.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/127/toc127.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

EOF

No 2.7 Kernel?

Greg Kroah-Hartman

Issue #127, November 2004

Forget everything you knew about odd-numbered and even-numbered kernels.

At the 2004 Linux Kernel Summit, the core kernel developers announced they
weren't creating a 2.7 development kernel anytime soon. They said they liked
the way things were going and didn't want to change things. This caused a lot of
confusion, so this article is an attempt to explain.

During the 2.5 kernel development cycle, the top-level maintainers' process
changed. Before Linus started using the BitKeeper version control system,
kernel maintainers would send Linus 10–20 patches at once, then wait for him
to release a snapshot to determine whether the patches had made it in. If not,
they would try again. This worked pretty well for more than ten years.

Early in the 2.5 development cycle, a huge flame war over dropped patches
ended with Linus deciding to try BitKeeper. After much hacking by the
BitKeeper developers to clean up some features that kernel developers
needed, Linus released the 2.5.3 kernel on February 2, 2002, and announced he
was going to use BitKeeper. This really didn't change the way the majority of
kernel developers worked. They still send patches to the upper-level
maintainers and wait. But for the small subset of maintainers that decided to
use BitKeeper, life changed a lot. They would create a BitKeeper tree, populate
it with the changes they wanted to send to Linus and then point Linus to it. He
would suck the patches into his tree and merge any minor conflicts with other
people's work.

BitKeeper had some unexpected consequences. First, everyone had an up-to-
date view of Linus' tree at any moment. A few developers, including Peter Anvin
and Jeff Garzik, created the ability to make nightly snapshots appear as patches

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

at kernel.org. They also, with the help of the BitKeeper developers, created CVS
and Subversion repositories for users of those version control systems.

Knowledge of the current state of the tree meant maintainers could start
sending patches to Linus faster and see when he accepted them. Instead of
waiting two weeks for a new snapshot, they could send in more changes
immediately. The rate of kernel development instantly increased.

Second, every patch accepted into Linus' tree started going to a mailing list,
which enabled everyone to see changes. Developers could watch what was
happening in all parts of the kernel, see the reasoning as explained in
changelog entries and point out problems. The list increased the peer review
process, allowing new bugs to be noticed sooner, while the area of
development was still fresh in the developer's mind.

 2.6 Finally Escapes from Development

On October 31, 2002, kernel developers announced the 2.6 feature-freeze. On
July 7, 2003, the first 2.6.0-test1 kernel was released, and the maintainer
process changed again. Andrew Morton started being the funnel to Linus for
almost all patches. However, maintainers that used BitKeeper kept having their
trees being pulled directly in by Linus. Finally, on December 17, 2003, the 2.6.0
kernel was released, representing an average of 1.66 changes per hour for the
680 days of 2.5 and 2.6 development.

The next five 2.6.x kernel releases happened about every month, with 538–
1,472 changes per release. Then, with the 2.6.5 kernel things started to move
much more quickly; 2.6.6 came out with 1,757 changes, and 2.6.7 had 2,306
changes. From 2.6.0 to 2.6.7, the stable kernel, at 2.2 patches per hour, was
changing at a rate greater than the “development” kernel had. But, the 2.6.7
kernel was the most stable Linux kernel ever, by a wide range of benchmarks
and regression tests.

Have the core kernel developers gone mad and started to add untested code
willy-nilly? No. In 2.6, Andrew Morton continued to stage all proposed patches
for testing before sending them to Linus. Maintainers using BitKeeper would
check the status of their patches in Andrew's tree, and if no problems were
found, they would ask Linus to accept them.

So, all changes now are being tested by users in the -mm tree. This is different
from how things had been done before. Now, patches are tested, built, used
and abused by users in the world before being deemed acceptable. If a specific
patch or set of patches is found to have problems, Andrew simply drops them
from his tree and forces the original developer to fix the issues.

Because of the ability for a wider range of testing of patches to go into the tree,
the development process for 2.6 will consist of the following: 1) Linus releases a
2.6 kernel release. 2) Maintainers flood Linus with patches that have been
proven in the -mm tree. 3) After a few weeks, Linus releases a -rc kernel
snapshot. 4) Everyone recovers from the barrage of changes and starts to fix
any bugs found in the -rc kernel. 5) A few weeks later, the next 2.6 kernel is
released and the cycle starts all over again.

However, if a set of kernel changes ever appears that looks to be quite large
and intrusive, a 2.7 kernel might be forked to handle it. Linus will do this,
putting the new experimental patches into that tree. Then he will continue to
pull all of the ongoing 2.6 changes into the 2.7 kernel, as the 2.7 kernel
stabilizes. If it turns out that the 2.7 kernel is taking an incorrect direction, the
2.7 kernel will be deleted, and everyone will continue on with the 2.6 tree. If the
2.7 tree becomes stable, it either will be merged back into the 2.6 tree, or it will
be declared 2.8.

All of this is being done because kernel developers are working very well
together in the current situation. Large changes that are arguably rather
intrusive, like the change from 8k to 4k kernel stacks, are being merged into the
“stable” kernel series. Users have access to the latest features with a greatly
reduced delay time. Distributions can provide a more stable kernel to their
customers, as they are not forced to backport features from the “development”
kernel into their “stable” kernel, as was the case during the 2.5 development
series.

Quicker development ensures that the in-kernel API will change constantly. This
always has been the case for Linux, but now it is even more pronounced. Thus,
any kernel modules that are not kept in the main kernel.org tree quickly will
stop working. It is essential that these modules be added to the main kernel
tree. That way, any API changes also are made to the affected modules, and all
users benefit from the added features these modules provide.

The process really hasn't changed suddenly, it has evolved slowly into
something that has been working quite well—so well in fact, no one outside of
the kernel community realized it had changed, only that they were using the
best Linux kernel ever.

Greg Kroah-Hartman currently is the Linux kernel maintainer for a variety of
different driver subsystems. He works for IBM, doing Linux kernel-related
things, and can be reached at greg@kroah.com.

Archive Index Issue Table of Contents

 Advanced search

mailto:greg@kroah.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/127/toc127.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

 GumStix WS200X

Michael Boerner

Issue #127, November 2004

I found GumStix to be responsive to my concerns, and the company has shown
itself to be responsive to their users and open to challenges in developing novel
products.

Product Information.

• Vendor: GumStix
• URL: www.gumstix.com
• Programming: www.gumstix.org/tikiwiki
• Prices: WS-200ax—$139 US, WS-200ax-bt—$184 US, Serial Cable—$12 US,

USB cable—$15 US, 32MB MMC—$25 US, 128MB MMC—$65 US and
Antenna—$10

The Good.

• Unbelievably small.
• Easy to work with.
• Inexpensive.

The Bad.

• No easy I/O line access.
• Evolving documentation and product lines.
• Fragile Bluetooth antenna connector.

GumStix, founded in 2004, focuses on single-board computers (SBCs) built
around the Intel XScale PXA255 chip with Linux onboard. This review covers two
GumStix products in the WaySmall line, the WS200 and WS200-bt, one with and

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.gumstix.com
http://www.gumstix.org/tikiwiki

one without an Infineon ROK104001 Bluetooth module. The case is basic and
small (1.5" × .25" × .5") with two mini-DIN8 serial connects and a USB mini-B
port connector, a port for an MMC Flash memory module and a 0.65 mm 4.5V
power connector. The version equipped with Bluetooth has an antenna
connector as well.

It is clear that the GumStix product line is evolving and expanding rapidly. Since
this review began, GumStix has added Bluetooth as an option, and the
company provided the second evaluation unit well into the review process. In
addition to Bluetooth, the newer version of the WS200 has a 60-pin Hirose
daughterboard connector rather than the 24-pin MOLEX connector on the
original evaluation model. I found GumStix to be responsive to my concerns,
and the company has shown itself to be responsive to their users and open to
challenges in developing novel products. Hopefully, that attitude will not
change.

The GumStix has the potential to be a truly breakaway product. Several other
SBCs are available, but none offers the combination of price, functionality, size
and low power consumption that GumStix offers. If you're an embedded
developer, the speed will make you happy, and the ease of use will make you
smile for days. I had the WaySmall running, connected to my Fedora Core 2
notebook, in less than 15 minutes. The WaySmall devices are an excellent place
to start learning embedded Linux.

Now, a little bad news: the documentation is a work in progress; however, the
company indicates that it understands the documentation has issues and is
working hard to improve it. GumStix recently added a Wiki with up-to-date
information and is rewriting the user manuals.

 Toolchains

The Intel XScale PXA255 CPU with its ARM core has several toolchains available,
and the manufacturer recommends both the gcc-3.3.2 and gcc-3.4.0 compilers.
By publication time, additional sets of tools will be added to the ones listed
here. The variety of tools is a useful aspect of the GumStix, because not all tools
provide the same options and utilities. Further, because most companies have
preferred toolchains, and many of us have our own preferences, not being tied
to a particular toolchain is an excellent feature.

Don't believe the GumStix manual when it states that it takes 30 minutes to
download and install the toolchain and to create, install and run the ubiquitous
HelloWorld.c. The time it takes to do so depends on many variables, such as,
which toolchain you select and how much horsepower the host has. Finally, an
MMC adapter on the host is recommended by GumStix, but I found it to be
absolutely essential.

The uClibc toolchain already was installed on my machine, so it was not
necessary to reinstall it, but I tried to make sure it worked. I was not surprised
to find it did not, as it was unable to resolve a server for one of the
components. I brought this point up with GumStix in a conversation, and the
rep said the company was preparing a new set of tools to resolve this and some
other issues. At that point, however, the new tools were not ready for review,
which was a relief because I found uClibc temperamental to configure and
install.

 Embedded

One nice feature of the GumStix is the option not to have the Bluetooth
capability. That might sound strange to those of you new to embedded
applications, but there are many reasons not to want this feature. First, don't
pay for something you don't use. Second, the absence of Bluetooth allows one
to reduce the overall complexity of the devices, making them more reliable.
Third, the Bluetooth module consumes power and processor time. With
Bluetooth being optional, you can develop your application and then drop
Bluetooth and use a simpler replacement, without having to worry about
compatibility.

One point on the GumStix design: as mentioned earlier, the Molex connector
was replaced by the Hirose connector. This is a real improvement, as the Hirose
is more solid than the Molex and makes the GumStix-daughterboard
connection much more stable. Mechanical stability definitely is an issue with
the GumStix. At present, the connector is the only means of physical stability
between the GumStix board and any daughterboard. This definitely is not an
optimal arrangement. Hopefully, GumStix will add a drill hole or at least call out
some locations on the silk screen where holes could be added or glue points
might be placed. Mounting the GumStix in high-vibration or impact applications
will make this a must. I found that even fairly mild handling could dislodge the
daughterboard enough to make the connection fail, unless the case was
securely attached.

 Web

GumStix comes with BusyBox preloaded. BusyBox is an embedded application
package with a large number of tools, one of which is a Web server. To use it,
install your site at /var/www/html, reboot the WaySmall and off you go. One
immediate application is to add a Web interface to your embedded application.
Additionally, one could build a dedicated Web application for a WaySmall and
essentially have an application in a box. Keep in mind that the Intel PXA255 has
no floating-point unit, so number crunching is a stretch. However, several
popular lightweight Web applications could run easily on a dedicated WaySmall.

Simple text-based HTML created with a minimal amount of graphics and no
scripting was easy to accomplish. If you have an application that would not
stress the server, you will be in good shape. The processor speed was more
than adequate, but the RAM, storage and bandwidth were limitations on the
evaluation unit. The 32MB of RAM is too little storage space for anything
significant. The RAM is fixed, too, so you have to work around it. Storage is
more flexible, however, with up to 512MB available.

 Remarks

I suggest checking your intended host computer to see if it has a serial port,
because a lot of newer machines delete them in favor of USB. I also suggest
that you purchase the power supply, the 128MB MMC module and an MMC
adapter for your host machine. Third, as indicated earlier, mechanical stability
is a real issue with the GumStix. During the evaluation process, the antenna of
the WS200f-bt became damaged and the Bluetooth failed. This occurred
because the serial cable became tangled with the antenna. Additionally, when
the host machine was moved, a load was placed on the PCB connector and a
solder failed. Thus, the Bluetooth-equipped WaySmall may be too fragile for
practical applications. This is a known problem, however, and will be resolved
when the integrated antenna is added.

 Bluetooth

Bluetooth is an excellent addition. The bandwidth of Bluetooth is substantially
better than the serial connection and should be better than the USB 1.1 option.
The Bluetooth-enabled models allow you to go wireless. They automatically
boot to a configuration with rfcomm, generating a Bluetooth serial port called /
dev/rfcomm0, and the startup script starts a getty over it. I was able to establish
a serial connection over the Bluetooth, and it was faster than the USB 1.1
connection.

 What Next?

GumStix is refining its products rapidly, but I am going to make some
predictions:

• First, look for an integrated antenna. As a part of this change, I expect to
see the serial ports dropped in favor of serial-over-Bluetooth.

• Second, expect to see Ethernet added to the GumStix, certainly an
Ethernet-enabled device with a connector off one end. I would prefer to
see wireless Ethernet in lieu of Bluetooth, but that is my preference.

 Wrap-Up

The bottom line is the GumStix SBCs are cool. Their ease of use, small sizes, low
power consumption and flexibility make them excellent choices for a wide
range of applications. GumStix are good alternatives to most of the other SBC
form factors presently available and should be given serious consideration for
any new embedded development efforts.

Michael Boerner is a consultant based in St. Louis, Missouri. He likes to focus
on embedded Linux and device drivers and can be reached at
michael@boernerconsulting.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:michael@boernerconsulting.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/127/toc127.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Mastering UNIX Shell Scripting by Randy Michael

Marco Fioretti

Issue #127, November 2004

John Wiley & Sons, 2003

ISBN: 0471218219

$45 US

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

This Wiley Publishing tome is big (more than 650 pages), useful and very
complete. Be warned, however, that its scope is limited to system
administration. The purpose of the book is to solve “real world...problems for
those who have to automate these often complex and repetitive tasks”. Little
information is directly employable for end-user tasks, such as printing booklets,
mirroring Web sites or searching through e-mail.

The author has a lot of experience with shell scripting, and it shows. The scripts
to solve each problem are well written and discussed line by line. For each, a
preamble gives the big picture or introduces some command that is used in the
rest of the chapter.

Anyone interested in scripting for maximum portability or ease of maintenance
can learn a lot from this book. Everything needed to use the same script with
Linux and all varieties of UNIX is present: Linux, Solaris, AIX and HP-UX have
one subsection each.

The first chapter is a quick tutorial of shell scripting and a summary of all the
techniques discussed later. The second one goes head first into deep scripting
mode, setting the pace for the whole book. It offers 12 different ways to read a
file line by line, including benchmarks to find the fastest one.

The most arcane shell commands and options are explained with plenty of
examples. “Here” documents, a way to feed input to a script or command
within the script itself, are explained thoroughly. Readers learn more than they
could imagine about traps, typeset, getopts and other techniques for managing
command-line arguments.

System monitoring receives the most coverage: several chapters explain how to
detect and report problems in processes, disk space, memory and CPU usage.

Other important administration activities have their own sections. The author
moves with ease from system snapshots to print queues, automated FTP and
building sudo from source. Several methods to add menus and progress bars
to shell scripts are explained. Floating-point math, number conversion and
generation of random passwords and numbers also are covered. The volume
ends with 45 pages devoted to sending pop-up messages from UNIX to
Microsoft OSes. All scripts are available for download at the Wiley Web site area
devoted to the book.

Archive Index Issue Table of Contents

 Advanced search

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/127/toc127.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

 From the Editor

Got a Linux Server? Thank a Beowulf.

Don Marti

Issue #127, November 2004

Ten years ago, Donald Becker and Thomas Sterling built a 16-node cluster, the
original Beowulf, and started Linux and commodity hardware on a program of
relentless improvement.

In May 1965, IBM Chairman T. J. Watson, Jr., wrote of large scientific computers,
“at some point between two and three years ago it became evident that the
fallout from the building of such large-scale machines was so great as to justify
their continuance at almost any cost” (on Dr Mark Smotherman's site at
www.cs.clemson.edu/~mark/acs.html). That doesn't mean that high-
performance computing (HPC) startups have an easy time entering the
enterprise market. From Control Data to Thinking Machines, history shows that
if you concentrate on winning in HPC, you don't get the skills to cross over to
regular business customers.

But ten years after the first Beowulf, examples of what Watson called fallout are
everywhere on the Linux scene. From smoking out bad power supplies to fixing
device drivers to making manageability work for the PC architecture, HPC
customers are ruthless in demanding tweaks to turn a rack of off-the-shelf stuff
from a maintenance nightmare to an asset. For an IT vendor, an HPC program
can work like an automaker's racing program to test cutting-edge ideas and get
everyone fired up to win bragging rights.

Early Linux clusters were labor-intensive, with “crash carts” including keyboard
and monitor for BIOS access. Today, LinuxBIOS makes the pit crew's work
feasible for more and more machines per administrator. See Bernard Li's
article on how to take advantage of years of cluster experience from some of
the biggest, most innovative Linux supercomputing sites (page 52).

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.cs.clemson.edu/~mark/acs.html

And, forget about manageability for a while—let's talk performance issues. Paul
Terry, Amar Shan and Pentti Huttunen might have just sped up many people's
work by a whole lot. Check out their scheduler performance numbers on page
68 and prepare for more efficient work on your parallel jobs.

Leigh Orf has some great imagery of thunderstorms, rendered just for this
issue, and the software behind them is something you can download and hack
yourself. Get some ideas about scientific visualization on page 62, and send us
some images.

This issue isn't all clusters—Andres Benitez and Vicente Gonzales show how
they turned inexpensive non-networked air conditioners into a money-saving
system for a classroom building (page 44). And Nick Moffitt, whose spam-
fighting articles have been a hit on the Linux Journal Web site, is here with an
introduction to a new, flexible revision control system (page 90).

Whether you're putting together a cluster or enjoying the benefits of Beowulf-
driven improvements in hardware, Linux and related tools, have a great time
experimenting with all the amazing technology and cool projects in this issue.

Don Marti is editor in chief of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/127/toc127.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Real Blogs, Real Examples

When I saw the letter by Geraint Williams in the August 2004 issue of Linux
Journal, although I was glad to see a reply defending free speech, I still was
surprised that a technical article would have been illustrated by an example
containing controversial political content. But, then I found that the example in
question was an explanation by your author, Reuven Lerner, of why he had
chosen the name Altneuland for his blog—because the United States seemed
different to him after eight years of living in Israel. I'm sure the page appeared
to many others as it did to me—entirely innocuous rather than dangerously
controversial.

—
John Savard

 Look Daddy, Tux!

I'm a Linux fan/geek, from Buenos Aires, Argentina, and I have been using Linux
for more than eight years. I work as a Network Engineer/Consultant for
Ericsson. I've been a subscriber to Linux Journal for three years. I'll renew after I
go back to Buenos Aires and will wait every month for this amazing magazine
that makes my day every time I receive it. Here is a picture of my small Tux fan.
Now she's four years old, but at the time of the picture, she was 1 1/2. Every
time she sees a penguin she says, “Look daddy, Tux is there! Tux! Tux!” That
makes me laugh. Keep it up—doing this great magazine.

—
Francisco Puente

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Busy Linux User

I couldn't resist sending a picture of my granddaughter, Savannah. I have no
doubt she'll grow up on Linux and love it as much as she does my penguins.
Thanks for a superb, top-quality journal.

—
Michal Ludvig

https://secure2.linuxjournal.com/ljarchive/LJ/127/7700f2.large.jpg

 Penguin Fashions

Attached is a photo of my one-week-old daughter Sarka with a penguin
slobber-jacket. Enjoy!

—
Michal Ludvig

https://secure2.linuxjournal.com/ljarchive/LJ/127/7700f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7700f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7700f3.large.jpg

 Public Computer for Penguins

This costume is property of Linuxhelpdesk.net. We do an EU project on ease of
use of Linux in Finland. See www.linuxhelpdesk.net, or contact
jukka.penttinen@ncp.fi for more information.

—
Eero

https://secure2.linuxjournal.com/ljarchive/LJ/127/7700f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7700f3.large.jpg
http://www.linuxhelpdesk.net
mailto:jukka.penttinen@ncp.fi
https://secure2.linuxjournal.com/ljarchive/LJ/127/7700f4.large.jpg

 Picking Out Hardware with Dad

Attached is a photo of young Robert and me planning baby's first computer
before heading home from the hospital after his birth. How much beefier will
the Ultimate Linux Box be when he has the motor control to use a keyboard or
mouse?

—
David

https://secure2.linuxjournal.com/ljarchive/LJ/127/7700f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7700f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7700f5.large.jpg

 Flat Is the New Up

I have been noticing an interesting trend in LJ: it's getting thicker!
Congratulations. As a frequent reader of trade journals and hobby computer
magazines, I know what that means to the publisher. To my dismay, some of
my other trade journals are getting thinner. Some even have embraced
Microsoft in order to provide content!

I agree with reader Robert W. Carter that LJ is the new Byte [see Letters,
September 2004]. It is catering to my hobbyist curiosity and feeding my
demand for up-to-date articles and reviews of Linux software and hardware
applications. What you need now is to get Steve Ciarcia to write you a monthly
column (is he still publishing Circuit Cellar?), and get Jerry Pournelle a cameo
every once in a while. That will transform LJ into the nurturer of the new
generation of computer hobbyist in the same way Byte did in the 1980s. Keep
up the good work!

—
Anibal Morales

LJ hasn't gotten thicker or thinner in a while. Circuit Cellar is still around and
knocks our socks off with great projects using inexpensive 8-bit processors.
Check it out at circuitcellar.com.—Ed.

https://secure2.linuxjournal.com/ljarchive/LJ/127/7700f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7700f5.large.jpg
http://circuitcellar.com

 Bad Web Site, Bad, Bad

Why is horizontal scrolling required to read Don Marti's article “Breaking the
Laptop Barrier” [www.linuxjournal.com/article/7698] posted August 3, 2004? I
viewed several other LJ articles with Mozilla without any horizontal scroll issues,
so I'm pretty sure it's the one article.

—
Scott

Someone posted a long URL in the comments, which messed up the layout.
Watch our Web site for a redesign that will fix this and other issues.—Ed.

 Airplane Painting Tool

I regularly buy Linux Journal in the local bookstore with foreign literature.
Although I'm not in the IT business, I find a lot of articles interesting (my
computers are all running either Linux or some variant of BSD). My father, who
is an active radio control flyer, recently bought a new model airplane named X-
Free. The decision about the painted decoration was quite easy because of the
name, but The GIMP made it even easier. We took a photo of the unpainted
airplane and used The GIMP to apply the finish and tweak it until we were
satisfied. We then printed out the modified photo and my father copied the
design to the real airplane.

—
Tomaz Solc

http://www.linuxjournal.com/article/7698
https://secure2.linuxjournal.com/ljarchive/LJ/127/7700f6.large.jpg

 Penguin Papa's Photo

Here is a photo of my two boys wearing—back-to-front, of course—their
GeekStuff Linux Tux baseball caps. I have them convinced that they are the only
boys in all of Ireland with caps like these—walking open-source advertisements!
This picture was taken last Easter at a small fishing village in the southeastern
corner of Ireland. The water looks inviting, but don't be fooled. The air
temperature was about 15°C. Brrrrrrr!

—
Paul

https://secure2.linuxjournal.com/ljarchive/LJ/127/7700f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7700f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7700f7.large.jpg

 Good News on Wireless Router Code

The article “Linux on Linksys Wi-Fi Routers” in the August 2004 issue says:

Many similar wireless routers, such as the Belkin
F5D7230-4, the Buffalotech WBR-G54 and the ASUS
WL-300g and WL-500g, all use Linux in their firmware,
and the list expands daily. Unfortunately, none of
these companies has complied with GPL requirements
and released the source code.

Belkin has released its source code: web.belkin.com/support/gpl.asp. Perhaps it
was after the article went to press. More information on hacking the firmware
can be found at www.seattlewireless.net/index.cgi/Belkin_20F5D7230_2d4.

—
Brian King

 Photo of the Month: More Penguin Cake

My husband is a computer programmer and uses Linux a lot. He also enjoys
the game Tux Racer. When he commented that I make special cakes for the
kids' birthdays and not for his, I couldn't resist attempting to create a Tux cake
to surprise him. After seeing the Photo of the Month winner for September
2004, he suggested I submit this photo.

—
Margaret Haller

https://secure2.linuxjournal.com/ljarchive/LJ/127/7700f7.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7700f7.large.jpg
http://web.belkin.com/support/gpl.asp
http://www.seattlewireless.net/index.cgi/Belkin_20F5D7230_2d4

Photo of the Month gets you a one-year extension to your subscription. Photos
to info@linuxjournal.com. By the way, Tux Racer is now available as an arcade
game. Congratulations to the tuxracer.com team.—Ed.

 More Radio, Please

I, for one, would love to see more amateur radio-related articles in LJ. We are a
technically oriented group. There must be scores of others out there like
myself.

—
Richard (WB2RAR)

https://secure2.linuxjournal.com/ljarchive/LJ/127/7700f8.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7700f8.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7700f8.large.jpg
mailto:info@linuxjournal.com

 Weather Maps via Ham Radio

Thanks for the September 2004 issue of Linux Journal. I truly enjoyed the radio
articles. Please keep them coming, especially articles like the one on PSK31. I
enjoy using Linux to decode different digital modes on the HF band. With the
storms of this last week, I enjoyed using the Linux program HamFax to receive
Weather Faxes from NOAA—I could have gotten the images from the Internet,
but where is the challenge in that?

—
Richard

 GPS Software Suggestions

Your September 2004 article on GPS was interesting, especially some of the
science behind the technology. I'd like to point out two additional software
packages.

1) nmead—written by Chuck Taylor. This reads GPS from your serial port and
makes it available on a network port. His site also has a Java-based sample GUI
(home.hiwaay.net/~taylorc/gps/nmea-server).

2) ntpd—Network Time Protocol. I personally submitted patches that add
nmead support to ntp. I think it will be in the next stable release. Until then, the
patches are available at trainguy.dyn.dhs.org/~jminer/gps.html. Thanks for
another month of interesting articles!

—
Jon Miner

 Hardware for TV Projects

I noticed in the Ultimate Linux Box article, August 2004, that future issues will
have projects based on HDTV cards. Are you planning on covering the
Hauppauge HDTV cards as well as the pcHDTV HD-2000 card?

—
John R. Klaus

We'll try to make all our TV projects useful on as much hardware as possible.
But, if you live in the USA and think you might want to watch HDTV someday,
get an unrestricted card now before the Broadcast Flag regulation goes into
effect.—Ed.

http://home.hiwaay.net/~taylorc/gps/nmea-server
http://trainguy.dyn.dhs.org/~jminer/gps.html

 Photos of Kids Are Fine

Because of the regular appearance of photos of children in the Letters section
of Linux Journal, I WILL be renewing my subscription. By the way, I also like the
photos of pets very much. Does the www.linuxjournal.com Web site have an
“About us” page with photos of the writers and spouses, kids and pets? I think
that would be pretty great too.

—
Rick Deschene

A new look for the Web site is coming soon.—Ed.

 Gorilla Marketing

Like most Linux users, I always am looking for ways to raise awareness and
further the proliferation of Linux in industry and at home. Being an employee
of a very large company, I have experienced first-hand what it is like to do
battle with an 800-pound Microsoft-Certified gorilla of an IT department. To
date, I have lost far more battles than I have won on this front, but I have not
given up the cause. As a result of the wins we now run a few Linux servers and
have a desktop machine here or there, but it still takes “an act of congress” to
get approval from the gorilla to install Linux for general-purpose computing.

My most recent tactic was to purchase a subscription to Linux Journal and have
it sent to an influential member of our IT department. I cannot think of how I
could get more Linux-proliferating bang for my hard-earned $25. For the next
12 months, management will be presented with a wealth of information about
the state of Linux. I honestly believe that if only one out of every ten LJ readers
did the same thing it would go a long way to growing our very own 800-pound
penguin.

—
J. Eric Pipas

 More Radio, Please (Part II)

I really appreciate these articles [see the September 2004 issue]. I am new to
Linux and was a ham way back when. I was also a “real” engineer (Electrical vs.
Software Engineer now) when I started. These articles seem like a good way for
me to get back into what I love and also to learn Linux. I have been playing
around with Linux and see how the two will fit together well for my education in
both. Thanks, and keep these articles coming.

—

http://www.linuxjournal.com

Tom Richards

 Tracing Tool Tip

I enjoyed the article on Linux hacking tools in the September 2004 issue. strace
is an extremely useful utility for getting in between applications and the kernel
to see what's going on. What's missing from the list is its companion program
ltrace. ltrace allows the developer to monitor library calls made by dynamically
linked applications, such as calls made to the C library or to GTK. This capability
comes in handy when debugging or analyzing other people's code, so ltrace
should fit right into any Linux developer's bag of tricks.

—
Ryan Underwood

 Erratum

I received an e-mail from Mr Lyndon Tynes stating there was an error in one of
the Best of Technical Support questions I answered in the June 2004 issue of LJ.
The question relates to “Changing Desktop Environments” (page 66), and the
correct reply should have been written as follows:

You can change the content of /etc/sysconfig/desktop from:
DESKTOP="GNOME" to DESKTOP="KDE" or DESKTOP="WINDOWMAKER",
and your X Window System will start the corresponding window manager. The
file that controls which window manager starts is /etc/X11/xinit/Xclients; take a
look and study it.

—
Felipe Barousse Boué

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/127/toc127.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

UpFront

• diff -u: What's New in Kernel Development
• Globulation 2:
• LJ Index—November 2004
• Mairix:
• On the Web
• They Said It

diff -u: What's New in Kernel Development

Zack Brown

Issue #127, November 2004

Red Hat has decided to release their newly purchased Global Filesystem (GFS)
clustering filesystem under the GPL. This project has had a checkered past. It
started out as a GPLed project from Sistina, but the company changed its
license in 2001 to the Sistina Public License, which required a licensing fee to be
paid to Sistina in the event of source code redistribution. Among various
outcries at that time, Alan Cox claimed the license change violated the
copyright of his own GFS contributions, and the OpenGFS Project sprang up,
using the last GPLed version of Sistina's code. During the next few years, Sistina
made some effort to market GFS in its new proprietary form, including
partnering with CommVault in 2003. In 2004, Red Hat bought the code from
Sistina and has now re-released it under the GPL. Back in 2000, GFS was
considered a likely candidate for inclusion in the official Linux kernel; now that
it is available again, Red Hat is keen to submit it for inclusion once more. This
time, it looks as though the code will stay free.

Linus Torvalds has proposed a new patch attribution convention, which looks
to be achieving an early success. The goal, as he puts it, is to enable kernel
developers to track the history of a patch, in the case of charges of copyright
violation. There's no confusion over Linus' inspiration here. He and others have
had to spend a lot of time debunking each of The SCO Group's charges of
copyright violation. Doing so has, until now, involved much wading through

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

ancient mailing-list archives. Linus' suggested attribution system, which
appears to be being adopted fairly widely after only a brief discussion, simply
involves developers including their names on patches to indicate compliance
with the kernel's license. Each patch will have one name for each developer
who edits it before it is included in the kernel. This way, any future charges of
copyright violation can be investigated by examining the patches themselves,
rather than trying to trace each patch's history through mailing-list discussions.
As of this writing, many developers are using the system, although so far there
has been no need to use the newly gathered data.

Randy Dunlap has introduced a new wrinkle into the old idea of saving .config

information in the kernel itself after compilation. His idea is also to include data
on the kernel version, as well as the date compilation took place. The initial
struggle to get .config information into the kernel was fraught with controversy,
due to the argument that such data also could be stored outside the kernel.
With that part of the controversy resolved, the suggested addition of Randy's
new data is finding a much warmer reception. In fact, a number of developers
have remarked that the idea itself should have been obvious long before. It
seems a deeply embedded part of human nature that even the obvious often
must have its initial discoverer.

Jeff Dike's User-Mode Linux (UML) is having some technical difficulties making
its way into the official 2.6 kernel tree. Apparently, Andrew Morton is more than
happy to accept Jeff's patches, although Jeff appears to be having trouble
splitting the patches into acceptable chunks. Jeff himself has said that he has
“painted himself into a corner” with regard to his UML work; the problem, he
says, is finding the right tools to manage the patch split. The UML patch has
become so large that splitting it up has become a major undertaking. This
actually is a typical occurrence with large features. Often, insufficient effort is
given toward preparing the patch for inclusion, and when the developers finally
feel the time is right, they discover they have a ton of additional work to do
before the patch even will be considered. This usually engenders much
controversy. Jeff is no stranger to the issues involved, but even knowing the
requirements, it is still difficult to split patches into atomic pieces that each
either fix or implement a single thing. Clearly, UML is destined for inclusion in
2.6, but these difficulties may result in significant delays.

John A. Martin has maintained the CREDITS file for quite a long time and has
been acknowledged in the MAINTAINERS file for that reason as well; but the
CREDITS file now apparently has become self-maintaining, no longer requiring
any specific maintainer. Linus Torvalds, Andrew Morton and the other kernel
maintainers have taken over much of that role, and developer patches often
include their own updates to the CREDITS file, without requiring anyone else to
add them. The CREDITS file has, quite simply, become a fully adopted element

of kernel development. Back in the old days, when that file was first conceived,
the task was much more daunting, because there were so many contributors
not mentioned in it. Now that it has established itself, its current listing is much
more accurate. John graciously stepped down when Adrian Bunk pointed out
that a maintainer was no longer needed; although John said he would be willing
to resume maintenance should the need arise in the future.

Globulation 2: www.ysagoon.com/glob2

Don Marti

Issue #127, November 2004

This real-time strategy game breaks away from the Warcraft style, where you
select units and give orders. Instead, you create a building site or other task
and specify how many of your amoeba-like units you want to work on it. Based
on units you have available and their skill levels, the game will assign units and
tasks.

There's a beautiful level editor that creates interesting random terrain, but the
computer players are still fairly dumb. Globulation 2 supports network play,
and development seems to be happening rapidly.

LJ Index—November 2004

• 1. Compound annual growth rate (CAGR) percentage for Linux servers in
China for the next five years: 49.3

http://www.ysagoon.com/glob2

• 2. Approximate number of developers who contribute changes to Linux
on a regular basis: 1,000

• 3. Percentage of the above who are paid to work on Linux by their
employers: 10

• 4. Percentage of the latest 38,000 changes to Linux that were made by
those paid to work on Linux: 97.4

• 5. Billions of dollars generated by Linux for related products and services
in 2003: 2.5

• 6. Approximate thousands of IT jobs listed on Dice.com: 49
• 7. Approximate hundreds of IT jobs listed on Dice.com that require Linux

skills: 22
• 8. Percentage increase in above number over the last year: 190
• 9. Number of IT jobs listed on Dice.com that require Linux certification: 10
• 10. Position of Apache in Netcraft Web Server Survey: 1
• 11. Apache share percentage in latest survey (August 2004): 67.37

• 1: CCID Consulting, via Oracle
• 2–4: Andrew Morton
• 5: Morgan Reed, Association for Competitive Technology
• 6–9: Computerworld.com
• 10, 11: Netcraft, Ltd., netcraft.com

Mairix: www.rc0.org.uk/mairix

Don Marti

Issue #127, November 2004

“It's in my old mail somewhere” isn't good enough. Add a powerful search
feature to your mail without switching mailers with this simple command-line
tool. You can search for any text or for words that appear in certain headers.

To use Mairix, edit a short config file to specify where your mail folders live,
then run it without arguments to build the index. Run Mairix with an item to
search on, and it puts copies of search results in a match folder that you can
browse in your mailer like any other mail folder.

http://netcraft.com
http://www.rc0.org.uk/mairix

On the Web

If you want to read more from Linux Journal authors, add our Web site to your
bookmarks or RSS reader and catch their regular Web columns.

• “Linux in Government” by Tom Adelstein—how is Linux progressing on the
local, state and federal government levels? What initiatives are underway
that feature open-source software? Which government agencies are
embracing open source and Linux, and what companies are helping them
do it?

• “At the Sounding Edge” by Dave Phillips—the author of The Book of Linux
Music & Sound explores new audio technology and helps you find the
best tools for recording, mixing, editing and playback—even tools for your
lessons and practice sessions.

• “OOo Off the Wall” by Bruce Byfield—you've made the office suite leap to
OpenOffice.org. Now what? Learn tips and maneuvers for making your
documents look better, and save time with tools and options not even
offered in other office suites.

• “cat/dev/DiBona/brain” by Chris DiBona—what's on the mind of this man
on the Linux scene whose distinguished résumé includes VA Research,
Slashdot and Google? Fighting spam, showing how to get the most out of
.org pavilions (the best part of tradeshows) and many other things.

They Said It

People's stereotype [of the typical Linux developer] is of a male computer geek
working in his basement writing code in his spare time, purely for the love of
his craft. Such people were a significant force up until about five years ago.

—Andrew Morton, gcn.com/vol1_no1/daily-updates/26641-1.html

Openness matters in two places. One is in source code. The other is in data.

—R0ml Lefkowitz, Director, Open Source, AT&T Wireless (Talk at the O'Reilly
Open Source Convention)

Never before in history have we been able to see incumbent businesses protect
business models based on old technology against creative destruction by new
technologies. And they're doing it by manipulating the political process. The
telegraph didn't prevent the telephone, the railroad didn't prevent the
automobile. But now, because of the immense amounts of money that they're
spending on lobbying and the need for immense amounts of money for media,
the political process is being manipulated by incumbents.

http://gcn.com/vol1_no1/daily-updates/26641-1.html

—Howard Rheingold, www.businessweek.com/bwdaily/dnflash/aug2004/
nf20040811_1095_db_81.htm

This adoption of free software to resolve incompatibility between the economic
need for provider diversity and the engineering need to avoid product diversity
is, I think, fairly unique across all industry. I can't think of similar examples.

—Andrew Morton, www.groklaw.net/article.php?story=20040802115731932

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.businessweek.com/bwdaily/dnflash/aug2004/nf20040811_1095_db_81.htm
http://www.businessweek.com/bwdaily/dnflash/aug2004/nf20040811_1095_db_81.htm
http://www.groklaw.net/article.php?story=20040802115731932
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/127/toc127.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 New Products

FlashDisk OpenRAID, CommuniGate Pro 4.2, Unisys ES7000 Servers, Wyse
Winterm and more.

SC-4400 FlashDisk OpenRAID

Winchester Systems announced the release of FlashDisk OpenRAID, a data
storage array capable of supporting up to five heterogeneous servers. The
servers share a storage pool by way of the U160 SCSI protocol, capable of
scaling to 2.3TB. With the addition of an expansion chassis, FlashDisk
OpenRAID can scale to 4.6TB, supporting up to three hosts. It supports dual
redundant 64-bit RAID controllers and can be used for various disk-intensive
tasks, such as database, multimedia, e-mail or Web server work. The SC-4400 is
compatible with any server or OS and has no host software driver
requirements.

Winchester Systems, 149 Middlesex Turnpike, Burlington, Massachusetts
01803, 800-325-3700, www.winsys.com.

 Red Hat Application Server

The Red Hat Application Server is an open-source middleware platform for Java
2 Enterprise Edition (J2EE) applications. The server includes a runtime system
and development libraries and is tested and supported on all major Java Virtual
Machines, including Sun SDK, BEA WebLogic JRockit and IBM JDK. It also is
certified with databases, including Oracle Database, IBM DB2, Sybase,
PostgreSQL and MySQL. Red Hat Application Server includes JOnAS, Tomcat,
Struts, supporting modules for file uploads and tutorials.

Red Hat, 1801 Varsity Drive, Raleigh, North Carolina 27606, 888-733-4281,
www.redhat.com.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.winsys.com
http://www.redhat.com

 CommuniGate Pro 4.2

With the release of version 4.2, CommuniGate Pro Real-Time Communications
now offers secure instant messaging, VoIP, video conferencing, whiteboard
sharing and desktop and application sharing capabilities. Using a standards-
based, cross-platform design enables CommuniGate Pro 4.2 to be utilized by
any client, whether in office or remote, using session initiation protocol (SIP) on
UNIX, Linux, Mac OS X or Windows. Also new for v4.2 is the choice of a fully
customizable or preconfigured Web interface for Web-based mail and
calendaring functions. In addition, CommuniGate Pro 4.2 offers remote
administrative control features for troubleshooting, maintenance and updating
duties.

Stalker Software, Inc., 655 Redwood Highway, Suite 275, Mill Valley, California
94941, 800-262-4722, www.stalker.com.

http://www.stalker.com
https://secure2.linuxjournal.com/ljarchive/LJ/127/7722f2.large.jpg

Unisys ES7000 Servers

Unisys announced a new server line, ES7000 Servers for Linux, available in both
32-bit and 64-bit configurations. The ES7000 servers can include 4 to 32 Intel
Xeon MP or Itanium 2 processors, 4 to 512GB of memory, 16 to 256MB of
shared cache and 8 to 160 I/O slots, both PCI and PCI-X. Servers can be run as
one single-image system, or they can be configured with as many as 12 logical
partitions running several different OSes concurrently. ES7000 Servers are
certified to run SuSE Linux Enterprise Server, Red Hat Enterprise Linux AS or
both.

Unisys Corporation, Unisys Way, Blue Bell, Pennsylvania 19424, 215-986-4011,
www.unisys.com.

 Wyse Winterm 5150SE

The Wyse Winterm 5150SE is a thin client powered by the Wyse Linux V6
operating system and running on an AMD Geode GX 533 processor. Wyse Linux
V6 is based on the 2.6 Linux kernel and offers customization for specific needs
across a wide variety of platforms, including Windows, UNIX, Linux, IBM, X-
Windows and Java. The Winterm 5150SE offers free seating capabilities so users
can log in to different clients without losing their specific configurations. The
modular design of the 5150SE allows features to be added and removed as
needed. The thin client features a read-only filesystem, no moving parts and a
compact chassis with USB and legacy I/O ports.

https://secure2.linuxjournal.com/ljarchive/LJ/127/7722f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7722f2.large.jpg
http://www.unisys.com

Wyse Technology, 3471 North First Street, San Jose, California 95134,
408-473-1200, www.wyse.com.

Atigo Wearable Computers

Xybernaut announced that its Atigo line of wireless panel computers now are
available with Linux. Atigos can be used as wireless flat-panel display
computers or standalone wireless-enabled mobile/wearable computers. Atigos
support dual-use functions and are configured with built-in IEEE 802.11b WLAN
wireless networking support through standard PC card and/or CompactFlash
slots. Atigos with Linux also offer open-source tools for support, standard
communication protocols, data management and system configuration. The
Atigo T model uses a Crusoe TM5800 processor with a 1GHz CPU and offers
256MB of SDRAM and Flash memory configurations of 128, 256 and 512 MB or
1GB. All Atigos have internal rechargeable Lithium-ion batteries and optional
hot-swappable external batteries. They all have 8.4-inch touchscreen-enabled
800 × 600 SVGA displays.

Xybernaut Corporation, 12701 Fair Lakes Circle, Suite 550, Fairfax, Virginia
22033, 703-631-6925, www.xybernaut.com.

Archive Index Issue Table of Contents

 Advanced search

http://www.wyse.com
http://www.xybernaut.com
https://secure2.linuxjournal.com/ljarchive/LJ/127/7722f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7722f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/127/7722f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/127/toc127.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

	Features
	Indepth
	Embedded
	Toolbox
	Columns
	Reviews
	Departments
	OSCAR and Bioinformatics
	Bernard

Li
	Introduction to Bioinformatics
	Walk-Through of a Typical OSCAR Installation
	New Features in OSCAR 4.0
	Creating Packages for OSCAR
	Bioinformatics Applications and OSCAR Cluster
	Conclusion
	Acknowledgements

	Scientific Visualizations with POV-Ray
	Leigh

Orf
	Getting the Source
	Scenes and Isosurfaces
	Density Files
	Getting Model Data into POV-Ray
	The Scene Description File
	Making Pictures and More

	Improving Application Performance on HPC Systems with Process
Synchronization
	Paul

Terry
	Amar

Shan
	Pentti

Huttunen
	Where Does the Performance Go?
	Recovering the Missing Performance
	Implementing a Synchronized Scheduling Policy
	Alignment of Scheduling Frames between Processors
	Performance Implications
	Conclusions

	2004 Readers' Choice Awards
	Heather Mead
	Favorite E-Mail Client
	Favorite Distribution
	Favorite Desktop Workstation
	Favorite Database
	Favorite LJ Column
	Most Indispensable Linux Book
	Favorite Backup Utility
	Favorite Audio Tool
	Favorite Desktop Environment
	Favorite Linux Web Site
	Favorite Linux Training
	Favorite Distributed File Sharing System
	Favorite Programming Beverage
	Favorite Embedded Distribution
	Favorite Web-Hosting Service
	Favorite Development Tool
	Favorite Text Editor
	Favorite System Administration Tool
	Favorite Server
	Favorite Network or Server Appliance
	Favorite Portable Workstation
	Favorite Processor Architecture
	Favorite Office Program
	Favorite Programming Language
	Favorite Instant Messaging Client
	Favorite Graphics Program
	Favorite Linux Game
	Favorite Web Browser

	MyHDL: a Python-Based Hardware Description Language
	Jan

Decaluwe
	Concepts
	A Real Design Example
	Verification
	Waveform Viewing
	Links to Other HDLs
	Epilogue

	Revision Control with Arch: Introduction to Arch
	Nick

Moffitt
	History of Revision Control
	Distributed Revision Control Systems
	Obtaining tla
	Checking Out a Read-Only Project
	Contributing Changes
	Keeping Up to Date
	Setting Up an Archive
	Setting Up a Project Branch
	Tagging Off the Branch
	Working with Your New Branch
	Merging Projects from Two Different Archives
	Speeding Up Archive Operations
	Libraries
	More to Come

	Linux and RTAI for Building Automation
	Andres Benitez
	Vicente Gonzalez
	User Interface
	Hardware Architecture
	Real-Time Tasks
	Linux Tasks
	IRC Command Interface
	Costs
	Conclusion

	At the Forge
	Aggregating with Atom
	Reuven
 M.
Lerner
	Some History
	Producing an Atom Feed
	Parsing an Atom Feed
	RSS or Atom?
	Conclusion

	Kernel Korner
	AEM: a Scalable and Native Event Mechanism for Linux
	Frédéric Rossi
	AEM: Architecture Overview
	AEM: Internals Overview
	Events
	Jobs
	Asynchronous Execution of Processes
	Memory Management
	Scalability
	Conclusion
	Acknowledgements

	Cooking with Linux
	Performing at the Speed of Light
	Marcel Gagné

	Paranoid Penguin
	Linux Filesystem Security, Part II
	Mick Bauer
	The Sticky Bit
	setuid and setgid
	setgid and Directories
	Numeric Modes
	umask
	su and sudo

	Linux for Suits
	We're Going to Be a 90% Linux Shop
	Doc

Searls

	EOF
	No 2.7 Kernel?
	Greg

Kroah-Hartman
	2.6 Finally Escapes from Development

	GumStix WS200X
	Michael Boerner
	Toolchains
	Embedded
	Web
	Remarks
	Bluetooth
	What Next?
	Wrap-Up

	Mastering UNIX Shell Scripting by Randy
Michael
	Marco Fioretti

	From the Editor
	Got a Linux Server? Thank a Beowulf.
	Don Marti

	Real Blogs, Real Examples
	Look Daddy, Tux!
	Busy Linux User
	Penguin Fashions
	Public Computer for Penguins
	Picking Out Hardware with Dad
	Flat Is the New Up
	Bad Web Site, Bad, Bad
	Airplane Painting Tool
	Penguin Papa's Photo
	Good News on Wireless Router Code
	Photo of the Month: More Penguin Cake
	More Radio, Please
	Weather Maps via Ham Radio
	GPS Software Suggestions
	Hardware for TV Projects
	Photos of Kids Are Fine
	Gorilla Marketing
	More Radio, Please (Part II)
	Tracing Tool Tip
	Erratum
	UpFront
	diff -u: What's New in Kernel Development
	Zack Brown

	Globulation 2: www.ysagoon.com/glob2
	Don Marti

	LJ Index—November 2004
	Mairix: www.rc0.org.uk/mairix
	Don Marti

	On the Web
	They Said It

	New Products
	SC-4400 FlashDisk OpenRAID
	Red Hat Application Server
	CommuniGate Pro 4.2
	Unisys ES7000 Servers
	Wyse Winterm 5150SE
	Atigo Wearable Computers

